
CSE 451: Operating Systems

Section 1

Intro, C programming, project 0

Introduction

 My name is Elliott and I am a fifth-year masters student in
computer science

 I graduated last year with a degree in computer science
and math

 I accepted an offer from Google to start as a software
engineer in August with the Dremel team

 I’m very passionate about C++ programming and
distributed systems
 Favorite classes: graphics, OS, distributed systems
 I have been a TA for CSE 451, CSE 333, and CSE 351

 My office hours are Wednesday 10:30-11:20, Thursday
11:30 to 12:20, or by appointment/when I’m in 002

 Contact: discussion board or by email (snowden@cs)
4/4/13 2

Why are you here?

You had an opening in your schedule and

needed a 400-level elective

You had heard how awesome Ed is as a

lecturer and wanted to experience him first-

hand

You want to learn about the part of

computer science that facilitates all others

4/4/13 3

Far-reaching implications

Operating systems techniques apply to all

other areas of computer science

Data structures

Caching

Concurrency

Virtualization

Operating systems support all other areas of

computer science

4/4/13 4

Course Tools

Use whatever works best for you: the CSE

home VM, attu, the instructional Linux

machines, or your own Linux installation

The second project requires the use of

VMWare Player/VirtualBox, which are

available for all major operating systems and

are also present on Windows lab machines

The forkbomb server (more on this next

week) can be used for kernel compilation
4/4/13 5

http://www.cs.washington.edu/lab/software/homeVMs/
http://www.cs.washington.edu/lab/software/homeVMs/

Course Tools

We’ll be using the GNU C Compiler (gcc) for

compiling C code in this course, which is

available on pretty much every platform

except Windows (unless through Cygwin)

For an editor, use whatever makes you

comfortable; Emacs, Vim, gedit, and Eclipse

are good choices

4/4/13 6

Discussion board

The discussion board is an invaluable tool;

use it!

Jim (my TA partner in crime) and I both

receive email alerts whenever there is a new

post, so prefer the discussion board to email

since then the rest of the class can benefit

from your questions as well

4/4/13 7

Collaboration

 If you talk or collaborate with anybody, or
access any websites for help, name them when
you submit your project

See the course policy for more details

Okay: discussing problems and techniques to
solve them with other students

Not okay: looking at/copying other students’
code

4/4/13 8

http://www.cs.washington.edu/education/courses/cse451/13sp/overview.html

C programming

Most modern operating systems are still
written in C

Why not Java?
 Interpreted Java code runs in a virtual machine, so

what does the VM run on?

C is precise in terms of
 Instructions (semantics are clear)
 Timing (can usually estimate number of cycles to

execute code)
 Memory (allocations/deallocations are explicit)

4/4/13 9

C language features

Pointers

Pass-by-value vs. pass-by-reference

Structures

Typedefs (aliasing)

Explicit memory management

4/4/13 10

Pointers

int x = 5;

int y = 6;

int* px = &x; // declare a pointer to x

 // with value as the

 // address of x

*px = y; // change value of x to y

 // (x == 6)

px = &y; // change px to point to

 // y’s memory location

// For more review, see the CSE 333 lecture

// and section slides from autumn 2012

4/4/13 11

Function pointers

int some_fn(int x, char c) { ... }

 // declare and define a function

int (*pt_fn)(int, char) = NULL;

 // declare a pointer to a function

 // that takes an int and a char as

 // arguments and returns an int

pt_fn = some_fn;

 // assign pointer to some_fn()’s

 // location in memory

int a = pt_fn(7, 'p');

 // set a to the value returned by

 // some_fn(7, 'p')

4/4/13 12

Case study: signals

extern void (*signal(int, void(*)(int)))(int);

What is going on here?

 signal() is ”a function that takes two
arguments, an integer and a pointer to a
function that takes an integer as an argument
and returns nothing, and it (signal()) returns a
pointer to a function that takes an integer as an
argument and returns nothing.”*

4/4/13 13

*See this StackOverflow post

* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple

Case study: signals

We can make this a lot clearer using a
typedef:

// Declare a signal handler prototype

typedef void (*SigHandler)(int signum);

// signal could then be declared as

extern SigHandler signal(

 int signum, SigHandler handler);

Much improved, right?

4/4/13 14

Arrays and pointer arithmetic

Array variables can often be treated like
pointers, and vice-versa:

int foo[2]; // foo acts like a pointer to

 // the beginning of the array

*(foo + 1) = 5; // the second int in the

 // array is set to 5

Don’t use pointer arithmetic unless you have
a good reason to do so

4/4/13 15

Passing by value vs. reference

int doSomething(int x) {

 return x + 1;

}

void doSomethingElse(int* x) {

 *x += 1;

}

void foo(void) {

 int x = 5;

 int y = doSomething(x); // x==5, y==6

 doSomethingElse(&x); // x==6, y==6

}

 4/4/13 16

References for returning values

bool Initialize(int arg1, int arg2,

 ErrorCode* error_code) {

 // If initialization fails, set an error

 // code and return false to indicate

 // failure.

 if (!...) {

 *error_code = ...;

 return false;

 }

 // ... Do some other initialization work

 return true;

}

4/4/13 17

Structures

// Define a struct referred to as

// "struct ExampleStruct"

struct ExampleStruct {

 int x;

 int y;

}; // Don’t forget the trailing ‘;’!

// Declare a struct on the stack

struct ExampleStruct s;

// Set the two fields of the struct

s.x = 1;

s.y = 2;

4/4/13 18

Typedefs

typedef struct ExampleStruct ExampleStruct;

 // Creates an alias “ExampleStruct” for

 // “struct ExampleStruct”

ExampleStruct* new_es =

 (ExampleStruct*) malloc(

 sizeof(ExampleStruct));

 // Allocates an ExampleStruct struct

 // on the heap; new_es points to it

new_es->x = 2;

 // “->” operator dereferences the

 // pointer and accesses the field x;

 // equivalent to (*new_es).x = 2;

4/4/13 19

Explicit memory management

Allocate memory on the heap:
 void* malloc(size_t size);

Note: may fail!
 But not necessarily when you would expect…

Use sizeof() operator to get size

Free memory on the heap:
 void free(void* ptr);

Pointer argument comes from previous
malloc() call

4/4/13 20

Common C pitfalls (1)

What’s wrong and how can it be fixed?

char* city_name(float lat, float long) {

 char name[100];

 ...

 return name;

}

4/4/13 21

Common C pitfalls (1)

Problem: returning pointer to local (stack)
memory

Solution: allocate on heap

char* city_name(float lat, float long) {

 // Preferrably allocate a string of

 // just the right size

 char* name = (char*) malloc(100);

 ...

 return name;

}

4/4/13 22

Common C pitfalls (2)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc(32);

strcpy(buf, argv[1]);

4/4/13 23

Common C pitfalls (2)

Problem: potential buffer overflow

Solution:

static const int kBufferSize = 32;

char* buf = (char*) malloc(kBufferSize);

strncpy(buf, argv[1], kBufferSize);

Why are buffer overflow bugs dangerous?

4/4/13 24

Common C pitfalls (3)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc(32);

strncpy(buf, "hello", 32);

printf("%s\n", buf);

buf = (char*) malloc(64);

strncpy(buf, "bye", 64);

printf("%s\n", buf);

free(buf);

4/4/13 25

Common C pitfalls (3)

Problem: memory leak

Solution:

char* buf = (char*) malloc(32);

strncpy(buf, "hello", 32);

printf("%s\n", buf);

free(buf);

buf = (char*) malloc(64);

...

4/4/13 26

Common C pitfalls (4)

What’s wrong (besides ugliness) and how
can it be fixed?

char foo[2];

foo[0] = 'H';

foo[1] = 'i';

printf("%s\n", foo);

4/4/13 27

Common C pitfalls (4)

Problem: string is not NULL-terminated

Solution:
char foo[3];

foo[0] = 'H';

foo[1] = 'i';

foo[2] = '\0';

printf("%s\n", &foo);

Easier way: char* foo = "Hi"';

4/4/13 28

Common C pitfalls (5)

Another bug in the previous examples?

Not checking return value of system calls /
library calls!

char* buf = (char*) malloc(BUF_SIZE);

if (!buf) {

 fprintf(stderr, "error!\n");

 exit(1);

}

strncpy(buf, argv[1], BUF_SIZE);

...

4/4/13 29

Project 0

Description is on course web page

Due Wednesday April 10, 11:59pm

Work individually

Remaining projects are in groups of 2. When you
have found a partner, one of you should fill out
this Catalyst survey by Monday at 11:59pm:
https://catalyst.uw.edu/webq/survey/elliottb/19
8212

4/4/13 30

Project 0 goals

Get re-acquainted with C programming

Practice working in C / Linux development
environment

Create data structures for use in later
projects

4/4/13 31

Valgrind

Helps find all sorts of memory problems
 Lost pointers (memory leaks), invalid references,

double frees

Simple to run:
 valgrind ./myprogram

 Look for “definitely lost,” “indirectly lost” and
“possibly lost” in the LEAK SUMMARY

Manual:
 http://valgrind.org/docs/manual/manual.html

4/4/13 32

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

Project 0 memory leaks

 Before you can check the queue for memory leaks, you
should probably add a queue destroy function:

void queue_destroy(queue* q) {

 queue_link* cur;

 queue_link* next;

 if (q != NULL) {

 cur = q->head;

 while (cur) {

 next = cur->next;

 free(cur);

 cur = next;

 }

 free(q);

 }

}

4/4/13 33

Project 0 testing

The test files in the skeleton code are
incomplete

Make sure to test every function in the interface
(the .h file)

Make sure to test corner cases

Suggestion: write your test cases first

4/4/13 34

Project 0 tips

 Part 1: queue
 First step: improve the test file
 Then, use valgrind and gdb to find the bugs

 Part 2: hash table
 Write a thorough test file
 Perform memory management carefully

 You’ll lose points for:
 Leaking memory
 Not following submission instructions

 Use the discussion board for questions about the code

4/4/13 35

