CSE 451: Operating Systems

4/4/13

Introduction

My name is Elliott and | am a fifth-year masters student in
computer science

| graduated last year with a degree in computer science
and math

| accepted an offer from Google to start as a software
engineer in August with the Dremel team

I’'m very passionate about C++ programming and

distributed systems

* Favorite classes: graphics, OS, distributed systems
* | have been a TA for CSE 451, CSE 333, and CSE 351

My office hours are Wednesday 10:30-11:20, Thursday
11:30 to 12:20, or by appointment/when I’'m in 002
Contact: discussion board or by email (snowden@cs)

4/4/13

Why are you here?

You had an opening in your schedule and
needed a 400-level elective

You had heard how awesome Ed is as a
lecturer and wanted to experience him first-
hand

You want to learn about the part of
computer science that facilitates all others

Far-reaching implications

Operating systems techniques apply to all

other areas of computer science
* Data structures

* Caching

* Concurrency

* Virtualization

Operating systems support all other areas of
computer science

4/4/13

4/4/13

Course Tools

Use whatever works best for you: the CSE
home VM, attu, the instructional Linux

machines, or your own Linux installation
The second project requires the use of
VMWare Player/VirtualBox, which are
available for all major operating systems and
are also present on Windows lab machines
The forkbomb server (more on this next
week) can be used for kernel compilation

http://www.cs.washington.edu/lab/software/homeVMs/
http://www.cs.washington.edu/lab/software/homeVMs/

4/4/13

Course Tools

We'll be using the GNU C Compiler (gcc) for
compiling C code in this course, which is
available on pretty much every platform
except Windows (unless through Cygwin)
For an editor, use whatever makes you
comfortable; Emacs, Vim, gedit, and Eclipse
are good choices

Discussion board

The discussion board is an invaluable tool;

use it!

Jim (my TA partner in crime) and | both
receive email alerts whenever there is a new
post, so prefer the discussion board to email
since then the rest of the class can benefit

from your questions as well

4/4/13

4/4/13

Collaboration

If you talk or collaborate with anybody, or
access any websites for help, name them when
you submit your project

See the course policy for more details

Okay: discussing problems and techniques to
solve them with other students

Not okay: looking at/copying other students’
code

http://www.cs.washington.edu/education/courses/cse451/13sp/overview.html

4/4/13

C programming

Most modern operating systems are still
written in C

Why not Java?

* Interpreted Java code runs in a virtual machine, so
what does the VM run on?

Cis precise in terms of
* Instructions (semantics are clear)

* Timing (can usually estimate number of cycles to
execute code)

* Memory (allocations/deallocations are explicit)

4/4/13

C language features

Pointers

Pass-by-value vs. pass-by-reference
Structures

Typedefs (aliasing)

Explicit memory management

10

Pointers

int x = 5;

int y = 6;

int* px = &x; // declare a pointer to x
// with value as the
// address of x

*PX = V3 // change value of x to y
/] (X == 6)

pPX = &V; // change px to point to

// y's memory location
// For more review, see the CSE 333 lecture
// and section slides from autumn 2012

4/4/13

11

Function pointers

int some fn(int x, char c¢) { ... }
// declare and define a function
int (*pt fn) (int, char) = NULL;
// declare a pointer to a function
// that takes an int and a char as
// arguments and returns an int
pt fn = some fn;
// assign pointer to some fn()’s
// location in memory
pt fn (7, 'p');
// set a to the value returned by

int a

// some fn(7, 'p')
4/4/13 12

4/4/13

Case study: signals

extern void (*signal (int, void(*) (int))) (int);

What is going on here?

signal () is “a function that takes two
arguments, an integer and a pointer to a
function that takes an integer as an argument
and returns nothing, and it (signal ()) returns a
pointer to a function that takes an integer as an
argument and returns nothing.”*

*See this StackOverflow post

13

* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple
* http:/stackoverflow.com/questions/1591361/understanding-typedefs-for-function-pointers-in-c-examples-hints-and-tips-ple

Case study: signals

We can make this a lot clearer using a
typedef:

// Declare a signal handler prototype
typedef void (*SigHandler) (int signum) ;
// signal could then be declared as

extern SigHandler signal (
int signum, SigHandler handler);

Much improved, right?

4/4/13 14

Arrays and pointer arithmetic

Array variables can often be treated like
pointers, and vice-versa:

int fool[2]; // foo acts like a pointer to
// the beginning of the array
*(foo + 1) = 5; // the second int in the

// array 1s set to 5

Don’t use pointer arithmetic unless you have
a good reason to do so

4/4/13

15

Passing by value vs. reference

int doSomething (int x) {
return x + 1;

}

vold doSomethingElse (i1nt* x) {
*x += 1;

}

volid foo (void) {

int x = 5;
int y = doSomething(x); // x==5, y==
doSomethingElse (&x) ; = ——

4/4/13

16

References for returning values

bool Initialize(int argl, int arg2z,
ErrorCode* error code) {
// If initialization fails, set an error
// code and return false to indicate
// failure.
if (M...) |
*error code = ...;
return false;
}
// ... Do some other initialization work
return true;

4/4/13

17

Structures

// Define a struct referred to as
// "struct ExampleStruct"
struct ExampleStruct {

int x;

int y;

}; // Don’t forget the trailing Y;’!

// Declare a struct on the stack
struct ExampleStruct s;

// Set the two fields of the struct
s.x = 1;
S.y = 2;

4/4/13

18

Typedefs

typedef struct ExampleStruct ExampleStruct;
// Creates an alias “ExampleStruct” for
// “struct ExampleStruct”

ExampleStruct* new es =
(ExampleStruct*) malloc(
sizeof (ExampleStruct));
// Allocates an ExampleStruct struct
// on the heap; new es points to it

new es->x = 2;
// “=>" operator dereferences the
// pointer and accesses the field x;
// equivalent to (*new es).x = 2;

4/4/13 19

Explicit memory management

Allocate memory on the heap:

vold* malloc(size t size);
* Note: may fail!
But not necessarily when you would expect...
* Use sizeof () operator to get size

Free memory on the heap:

vold free(void* ptr);

* Pointer argument comes from previous
malloc () call

4/4/13

20

Common C pittalls (1)

What’s wrong and how can it be fixed?

char* city name (float lat, float long) {
char name[100];

return name;

}

4/4/13

21

Common C pittalls (1)

Problem: returning pointer to local (stack)
memory

Solution: allocate on heap

char* city name (float lat, float long) ({
// Preferrably allocate a string of
// Jjust the right size

char* name = (char*) malloc (100);

return name;

4/4/13

22

Common C pittalls (2)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc (32);
strcpy (buf, argv[l]);

4/4/13

23

Common C pittalls (2)

Problem: potential buffer overflow

Solution:
static const int kRufferSize = 32;
char* buf = (char*) malloc (kBufferSize) ;

strncpy (buf, argv[l], kBufferSize);

Why are buffer overflow bugs dangerous?

4/4/13 24

Common C pitfalls (3)

What’s wrong and how can it be fixed?

char* buf = (char*) malloc (32);
strncpy (buf, "hello", 32);
printf ("$s\n", buf);

buf = (char*) malloc(64) ;
strncpy (buf, "bye", 64);
printf ("%$s\n", buf);

free (buf) ;

4/4/13

25

Common C pitfalls (3)

Problem: memory leak

Solution:

char* buf = (char*) malloc(32);
strncpy (buf, "hello", 32);
printf ("%s\n", buf);

free (buf) ;

buf = (char*) malloc (64) ;

4/4/13

26

printf ("%$s\n

4/4/13

Common C pittalls (4)

What’s wrong (besides ugliness) and how
can it be fixed?

char fool[2];
fool[0O] = '"H';
foo[l] = '"1';
\n",

foo) ;

27

Common C pitfalls (4)

Problem: string is not NULL-terminated

Solution:
char fool[3];
foo[0O] = '"H';
foo[l] = 'i';
foo[2] = 'NO:
printf ("%s\n", &foo);

Easier way: char* foo = "Hi"';

4/4/13

Common C pittalls (5)

Another bug in the previous examples?

Not checking return value of system calls /
library calls!

char* buf = (char*) malloc (BUF SIZE);
1f ('buf) {
fprintf (stderr, "error!\n");
exit (1)
}
strncpy (buf, argv[1l], BUF SIZE);

4/4/13

29

Project O

Description is on course web page
Due Wednesday April 10, 11:59pm

Work individually

* Remaining projects are in groups of 2. When you
have found a partner, one of you should fill out
this Catalyst survey by Monday at 11:59pm:
https://catalyst.uw.edu/webqg/survey/elliottb/19
8212

4/4/13

30

4/4/13

Project 0 goals

Get re-acquainted with C programming

Practice working in C / Linux development
environment

Create data structures for use in later
projects

31

4/4/13

Valgrind

Helps find all sorts of memory problems

* Lost pointers (memory leaks), invalid references,
double frees

Simple to run:
* valgrind ./myprogram

* Look for “definitely lost,” “indirectly lost” and
“possibly lost” in the LEAK SUMMARY

Manual:
X http://valgrind.org/docs/manual/manual.html

32

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

Project 0 memory leaks

Before you can check the queue for memory leaks, you

should probably add a queue destroy function:
vold queue destroy(queue* g) {
queue link* cur;
queue link* next;
if (g !'= NULL) {
cur = g->head;
while (cur) {

next = cur—->next;
free (cur) ;
cur = next;

}
free(q);

}
}

4/4/13

33

Project 0 testing

The test files in the skeleton code are
incomplete

* Make sure to test every function in the interface
(the .h file)

* Make sure to test corner cases

Suggestion: write your test cases first

4/4/13 34

4/4/13

Project 0 tips

Part 1: queue
* First step: improve the test file
* Then, use valgrind and gdb to find the bugs

Part 2: hash table
* Write a thorough test file
* Perform memory management carefully

You’ll lose points for:
* Leaking memory
* Not following submission instructions

Use the discussion board for questions about the code

35

