
1

CSE 451: Operating Systems
 Autumn 2013

Module 25

 Virtual Machine Monitors

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

© 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2

What do VMMs enable?

•  Running multiple operating systems (called “guest
OS’s”) and their applications on a single physical
computer, as if each were running on its own private
virtual computer

•  Efficient – mostly direct execution, rather than
simulation

•  Contemporary examples
–  VMware
–  Microsoft’s VirtualPC / VirtualServer
–  Parallels (Mac)
–  Xen

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

VMM structure

hardware

virtual machine monitor

Linux

Virtual Machine =
Guest OS + apps

Virtual Machine =
Guest OS + apps

Windows

applications applications

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Basic ideas

•  Guest OS runs in user mode
•  When any kind of interrupt / exception / trap occurs,

we’ll end up in the VMM rather than the guest OS
•  VMM simulates state changes that would have been

made by the hardware, then restarts VM at the guest
OS handler address
–  E.g., stuffs the saved PC where the architecture says it

should be

•  When the guest OS tries to execute a privileged
instruction
–  VMM gets control, simulates effect of privileged instruction

•  VMM knows that guest OS was in virtual kernel mode so the
attempted operation is OK

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

VMM History

•  Conceived by IBM in the late 1960’s
–  CP-40, CP-67, VM/360

•  Sold continuously since then
•  Used first for OS development and debugging, then

for time sharing (multiple single-user OS’s, plus a few
single-job batch OS’s), eventually for server
consolidation

System 370 Machine

VM/370

Batch processing
OS

Time sharing
OS

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

VMMs Today

•  OS development and debugging
•  Software compatibility testing
•  Running software from another OS

–  Or, OS version

•  Virtual infrastructure for Internet services (server
consolidation)

•  Examples
–  Run Windows on your Mac, or MacOS on your PC
–  VMware in CSE 451
–  Amazon’s Elastic Compute Cloud (EC2)

2

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Comparing the Unix and VMM APIs

UNIX	 VMM	

Storage	 File system	 (virtual) disk	

Networking	 Sockets	 (virtual) Ethernet	

Memory	 Virtual Memory	 (virtual) Physical
memory	

Display	 /dev/console	 (virtual) Keyboard,
display device	

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

Possible Implementation Strategy:
Complete machine emulation

•  The VMM implements the complete
hardware architecture in software

while(true) {!
 Instruction instr = fetch();!
 !
 // emulate behavior in software!
 instr.emulate();!
}!

Drawback: This is really slow

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

Physical hardware

loads,stores,
branches,

ALU operations
VMM

machine halt,
I/O instructions,
MMU manipulation,
disabling interrupts

Practical alternative: VMM gets control on
privileged instructions only

•  Treat guest operating systems (and their apps) like an application
–  Guest OS (and its apps) run in user mode
–  Most instructions execute natively on the CPU
–  Privileged instructions are trapped and emulated

OS + apps

V i r t u a l m a c h i n e s
. . .

OS + apps OS + apps

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

Virtualizing the User/Kernel Boundary

•  Both the guest OS and applications run in (physical) user-mode
•  For each virtual machine, the VMM keeps a software mode bit:

–  During a system call, switch to “kernel” mode
–  On system call return, switch to “user” mode

•  What does the VMM do if a VM executes a privileged instruction
while in virtual user mode?

•  What does the VMM do if a VM executes a privileged instruction
while in virtual kernel mode?

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Tracing Through a File System Read

Application Guest OS VMM Hardware
read() syscall

trap detected
trap handler;
change VM
to “kernel” mode

trap handler
handle read syscall
 read from disk() priv insc. detected

trap handler;
emulate I/O

. . . .

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Questions, to clarify …

•  What if the I/O could be handled from the buffer
cache?

•  Does the VMM handle a VM’s I/O request
synchronously?

•  There are a zillion different types of disks (and
networks and …) … Do the device drivers for these
reside in the guest OS or in the VMM?

3

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

A possible “gotcha”

•  All instructions that modify hardware state must be
privileged (so that VMM can get control, modify the
virtual hardware state for that guest, and not modify
the physical hardware state)

•  Example: Suppose the ERET instruction (return to a
user process after handling an exception) is not
privileged
–  ERET sets the PC to the saved PC, and sets CPU mode to

user
–  There doesn’t seem to be a reason to prevent user

processes from doing this (even if there’s no reason for them
to want to)

Why would this be a problem for a VMM?

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

x86

•  Conditions for an architecture to be virtualizable were
defined in 1974

•  x86 architecture did not satisfy these conditions!
–  Many reasons, but most of them stem from instructions that

have different behavior in user mode and kernel mode, and
that don’t trap when executed in user mode

•  Approach: binary re-writing
–  When a code page is loaded, scan it, looking for offending

instructions
–  Patch these to cause a fault
–  Remember the instruction that used to be there

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

Other approaches

•  Hardware: Both Intel (VT-x) and AMD (AMD-V) have
developed virtualization extensions to the
architecture (starting ~2006)

•  Paravirtualization: Export a slight modification of the
hardware; port the OS to this new hardware

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

Memory

•  VMM’s also utilize memory protection (in addition to
privileged instructions) to do their job

•  Have not described how memory is virtualized by a
VMM, creating “virtual physical memory” for the guest
OS’s

•  Approach involves the VMM futzing with the page
tables in the guest OS’s

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

