
Section 8

Eric Wu (ericwu@cs)

Today

• Project 3 Recap

• Project 4

• File Systems

Project 3 Recap

• How was performance?

– Async vs. Sync?

– Sync. # of threads?

– Async. # of calls?

– Buffer size?

Project 3 (Under the Hood)

• Calls to disk are all sequential access!

– Seems like concurrency won’t help much…

Project 3 (Under the Hood)

• Calls to disk are all sequential access!

– Seems like concurrency won’t help much…

• Disk Caching!

– Optimizations to keep pages in memory

Disk Caching

Disk

WriteFile(&buf);

ReadFile(&buf);

Memory

Disk Cache

Disc Caching

• Disk scheduler can minimize amount of I/O
between memory and disk.

• Delay write to disk as long as possible

• Reads must be immediate

– If a write occurs on a file, a read on the same file
must fetch from disk.

Project 4

• Due March 5th

• Please set up environment soon, if you have
not already!

Project 4

• Goals: Modify the FAT file system to

– Make all directories sortable

– Compact directories

Note: I have not done the project yet. All slides to follow are based on knowledge from someone who has.

The FAT File System

boot sector
FAT

(file allocation table) clusters … data

Size of FAT
Size of data area
Size of each cluster
Location of root dirent

Goal of FAT: store files and directories!

The FAT File System

boot sector
FAT

(file allocation table) clusters … data

Size of FAT
Size of data area
Size of each cluster
Location of root dirent

Goal of FAT: store files and directories!

Each cluster either:
• Stores data for a file or…
• Stores lists of files in a directory (dirent)

The FAT File System

boot sector
FAT

(file allocation table) clusters … data

Size of FAT
Size of data area
Size of each cluster
Location of root dirent

Goal of FAT: store files and directories!

Each cluster either:
• Stores data for a file or…
• Stores lists of files in a directory (dirent)

File Allocation Table
• Linked list of clusters
• As many entries as there are clusters

The FAT File System

• So, how do we get files?

The FAT File System

Project 4

• Goal: keep dirents sorted in each directory

– Note: This means implementing your own sorting
algorithm!

 PACKED_DIRENT (from fat.h)

FileName: “file1.txt”

LastWriteTime: …

FirstClusterOfFile: 1

FileSize: 4052

Project 4

• Kernel data structures: on-disk (fat.h)

– PACKED_BOOT_SECTOR (boot info… don’t modify)

– BIOS_PARAMETER_BLOCK (boot info… don’t modify)

– PACKED_DIRENT (DIRENT struct)

• Kernel data structures: in-memory (fatstruc.h)

– VCB (info about mounted volume)

– FCB (cached files)

– DCB (cached directories)

VCB Root DCB

DCB

DCB

DCB

FCB

FCB

(opened file)

(opened file)

Project 4

• Resort dirents when:

– Creating a new file (name, extension, cluster number)

– Closing a file (timestamp, size)

– Re-sorting the entire dirent

• Starting points:

– Examples similar to what you need to do, in dirsup.c

– Getting the volume label: VCB -> Vpb -> VolumeLabel
(see FatMountVolume and FatLocateVolumeLabel)

File Systems

• FAT is extremely limited. For n = bits in FAT ptr:

– DriveSize = 2n * clusterSize

• FAT16 (16 bit FAT pointers)
Drive Size Cluster Size

32 MB – 64 MB 1 KB

64 MB – 128 MB 2 KB

128 MB – 256 MB 4 KB

256 MB – 512 MB 8 KB

512 MB – 1 GB 16 KB

1 GB – 2 GB 32 KB

File Systems

• FAT is extremely limited. For n = bits in FAT ptr:

– DriveSize = 2n * clusterSize

• FAT32 (32 bit FAT pointers)
Drive Size Cluster Size

32 MB – 64 MB 0.5 KB

64 MB – 128 MB 1 KB

128 MB – 256 MB 2 KB

256 MB – 8 GB 4 KB

8 GB - 16 GB 8 KB

16 GB – 32 GB 16 KB

File Systems

• Disk utilization in FAT can be wasteful

• Storing n-bit allocation tables can be space
consuming:

– FAT32 needs to store 232 32-bit entries (16 MB)

– FAT64 needs to store 264
 64-bit entries (too large!)

• What if we just stored 1 bit per entry?

Inodes

• Use a block bitmap

– If bit=1, block is free to use

• Store file data pointers in inodes

super block free block bitmap … inodes … data

Blocks size is usually
small (1-4 KB)

Stores file metadata,
points to data blocks

Number of bits =
number of blocks

File Systems

super block free block bitmap … inodes … data

Blocks size is usually
small (1-4 KB)

Stores file metadata,
points to data blocks

Number of bits =
number of blocks

