Section 8

Eric Wu (ericwu@cs)



Today

Project 3 Recap
Project 4

File Systems



Project 3 Recap

* How was performance?
— Async vs. Sync?
— Sync. # of threads?
— Async. # of calls?
— Buffer size?



Project 3 (Under the Hood)

e Calls to disk are all sequential access!

— Seems like concurrency won’t help much...



Project 3 (Under the Hood)

e Calls to disk are all sequential access!

— Seems like concurrency won’t help much...
* Disk Caching!

— Optimizations to keep pages in memory



WriteFile(&buf);

ReadFile(&buf);

Disk Caching

~
-~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
-~
~
~ o~
~ 4

e ———
—_—
—_—
—_—
—_—
—_—
——
—_—
—_— —
—_——
—_—
—_—
—_—
—_—
—_—

/ Memory \
Disk Cache

o J




Disc Caching

Disk scheduler can minimize amount of I/0O
oetween memory and disk.

Delay write to disk as long as possible

Reads must be immediate

— If a write occurs on a file, a read on the same file
must fetch from disk.



Project 4

 Due March 5t

* Please set up environment soon, if you have
not already!



Project 4

* Goals: Modify the FAT file system to
— Make all directories sortable
— Compact directories

Note: | have not done the project yet. All slides to follow are based on knowledge from someone who has.



3

The FAT File System

boot sector
|

FAT

(file allocation table)

clu

sters ... data

Size of FAT
Size of data area
Size of each cluster

Location of root dirent

Goal of FAT: store files and directories!




The FAT File System

3

boot sector
|

FAT

(file allocation table)

clu

sters ... data

Size of FAT
Size of data area
Size of each cluster

Location of root dirent

Goal of FAT: store files and directories!

Each cluster either:
e Stores data for a file or...
» Stores lists of files in a directory (dirent)




The FAT File System

3

boot sector
|

FAT

(file allocation table)

clu

sters ... data

Size of FAT
Size of data area
Size of each cluster

Location of root dirent

Goal of FAT: store files and directories!

Each cluster either:
e Stores data for a file or...
» Stores lists of files in a directory (dirent)

File Allocation Table
e Linked list of clusters
* As many entries as there are clusters




The FAT File System

* So, how do we get files?



The FAT File System

FAT free cluster
= E it = E i
FFFF 0002 0003 FFEF FFFE 4 0006 FFFF 0000
Data area
free cluster
] l WE (] | O
/ gl mAsre gl mmewn gl emssln ] e 4 / 5 \ 6 7
A - More
oot dirents subdir dirents subdir dirents
?ame:l _ ;‘ﬁlel.txt name: “x0.txt” name: “yl.xt”
Irst cluster: first cluster: 100 first cluster: 401
name: “file2.txt”

first cluster: 4

name: “subdir”
first cluster: 5

:
-

name: “x|.txt”
first cluster: 205

name: “y2at”
first cluster: 402

name: “%2.15¢¢”
first cluster: 300

name: “y3.txt”
first cluster: 403




Project 4

Goal: keep dirents sorted in each directory

— Note: This means implementing your own sorting
algorithm!

PACKED DIRENT (from fat.h)

FileName: “filel.txt”
LastWriteTime: .
FirstClusterOfFile: 1

FileSize: 4052




Project 4

Kernel data structures: on-disk (fat.h)

— PACKED_BOOT_SECTOR (boot info... don’t modify)
— BIOS_PARAMETER_BLOCK (boot info... don’t modify)

— PACKED_DIRENT (DIRENT struct)
Kernel data structures: in-memory (fatstruc.h)

— VCB (info about mounted volume)
— FCB (cached files)
— DCB (cached directories)

VCB

DCB

/

DCB

Y

Root DCB

/- DCB

T~

FCB

(opened file)

FCB

(opened file)



Project 4

* Resort dirents when:
— Creating a new file (name, extension, cluster number)
— Closing a file (timestamp, size)
— Re-sorting the entire dirent

* Starting points:

— Examples similar to what you need to do, in dirsup.c

— Getting the volume label: VCB -> Vpb -> Volumelabel
(see FatMountVolume and FatLocateVolumeLabel)



File Systems

* FAT is extremely limited. For n = bits in FAT ptr:

— DriveSize = 2™ * clusterSize
 FAT16 (16 bit FAT pointers)
Ovesse |cusersie

32 MB-64 MB 1 KB
64 MB - 128 MB 2 KB
128 MB — 256 MB 4 KB
256 MB—-512 MB 8 KB
512 MB-1GB 16 KB

1GB-2GB 32 KB



File Systems

* FAT is extremely limited. For n = bits in FAT ptr:
— DriveSize = 2" * clusterSize

* FAT32 (32 bit FAT pointers)
orvesze lcusersee

32 MB-64 MB 0.5 KB
64 MB - 128 MB 1 KB
128 MB — 256 MB 2 KB
256 MB -8 GB 4 KB
8GB-16 GB 8 KB

16 GB-32 GB 16 KB



File Systems

e Disk utilization in FAT can be wasteful

* Storing n-bit allocation tables can be space
consuming:
— FAT32 needs to store 232 32-bit entries (16 MB)
— FAT64 needs to store 2%4 64-bit entries (too large!)

 What if we just stored 1 bit per entry?



Inodes

* Use a block bitmap
— If bit=1, block is free to use

* Store file data pointers in inodes

super block | free block bitmap ... inodes ... data
Stores file metadata, Blocks size is usually

Number of bits =

number of blocks points to data blocks small (1-4 KB)



File Systems

super block | free block bitmap ... inodes ... data
Number of bits = Stores file metadata, Blocks size is usually
number of blocks points to data blocks small (1-4 KB)
Cirect blocks
Double indirect
Indirect blocks blocks
inode

Infos I:I

Zis

=




