
Section 6

Eric Wu (ericwu@cs)

Topics for Today

• Project 1 & 2 Recap

• More Project 3

• Virtual Memory

• Deadlocks

• Midterm

Project 1 & 2 Recap

• Quick recap of design considerations

– What went well?

– What should be improved?

Project 1 Designs

OK

NtReadFile(…) {

 …

 recordValue(retVal1);

 return retVal1;

 …

 record Value(retVal2);

 return retVal2;

}

Better

NtReadFile(…) {

 int retVal = _NtReadFile(…);

 recordValue(retVal);

 return retVal;

}

_NtReadFile(…) {

 // Old NtReadFile

 …

}

Project 1 Designs

OK

sysinfo.c

ULONG readInfo = 0;

ULONG readWarning = 0;

ULONG readSuccess = 0;

…

Better

sysinfo.c

struct CSE451Info {

 ULONG read[4];

 ULONG write[4];

 ULONG open[4];

 ULONG create[4];

};

Project 2 Designs

OK

• Using buffer as a contiguous
block and resizing when full.

• Storing entire output string
of the history entry into the
buffer.

Better

• Using linked list of buffers
and removing from front,
adding to back.
– Also used circularly linked list

• Storing enumerations of
each history item into the
buffer.

Project 2 Designs

• Overall good design decisions

– Attaching mutex pointers to CSE451Info structs

– Making critical sections as small as possible

– Placing header files in base/ntos/inc/ and
modular implementations in base/ntos/ex/

– Placing initialization code in files in
base/ntos/init/

More Project 3

• Due Friday, Feb 17 at 11:59 pm

• If your shared space or SVN has issues, let me
know ASAP!

• Please describe your changes in your write up!

– You can use more than 1 page…if necessary.

More Project 3

• Check your group membership with the
following on attu:
group <username>

– This is your directory in
/projects/instr/12wi/cse451/<dir>

– E.g. membership to group cse451x maps to
/projects/instr/12wi/cse451/x

More Project 3

• Copy by multiple chunks, not necessarily multiple files.
– Break files into chunks of work (use chunkSize == BufferSize)
– Schedule chunks to threads (each thread copies one chunk at a

time)

chunk 1

chunk 2

chunk 3

…

Thread
1

Thread
2

chunk 4

chunk 5

Thread
10

…

File 1

File 2

More Project 3

• Performance?

– What to do when there is only one small file?

– What to do when there are multiple large files?

chunk 1

chunk 2

chunk 3

…

Thread
1

Thread
2

chunk 4

chunk 5

Thread
10

…

File 1

File 2

More Project 3

• Task scheduling approaches?

– Place chunks in a FIFO queue

– Work stealing (Google it!)

chunk 1

chunk 2

chunk 3

…

Thread
1

Thread
2

chunk 4

chunk 5

Thread
10

…

File 1

File 2

?

More Project 3 (Hints)

• Asynchronous I/O needs to keep track of
status of operations.
– E.g. open file, read file, write file, close file

– State tables may be helpful

• Remember that threads run single functions.
– Threads terminate after function returns, so figure

out how to keep threads alive (if necessary)

• Think carefully about what needs to be locked.
– Reading and writing a file requires disk seeks.

More Project 3 (Testing)

• Single small file

• Multiple small files

• Single large file

• Multiple large files

• Files in different directories

• Be creative!

Virtual Memory

• Recap

– Abstracts physical memory

– Uses a page table and offset to find a real address.

– Addresses seen in code are actually virtual
memory addresses.

Virtual Memory

Virtual Memory

Virtual Memory

• Processes are protected from each other via
virtual memory

• But, how is the kernel memory protected?

Virtual Memory

• Processes are protected from each other via
virtual memory

• But, how is the kernel memory protected?

– Kernel memory is part of the process memory!

Deadlocks

• What is it?

Deadlocks

• What is it?
– An irreducible circular

dependence.

 h
ttp

://lib
rary.th

in
kq

u
est.o

rg
/0

8
au

g
/0

1
0

3
3

/d
ead

lo
ck.jp

g

http://library.thinkquest.org/08aug/01033/deadlock.jpg

Spot the deadlock!

foo(x, y) {
 lock(&x);
 lock(&y);
 …
 unlock(&y);
 unlock(&x);
 …
}

Spot the deadlock!

Thread 1 Thread 2

foo(B, A) {
 lock(&B);
 lock(&A);
 …
 unlock(&A);
 unlock(&B);
 …

foo(A, B) {
 lock(&A);
 lock(&B);
 …
 unlock(&B);
 unlock(&A);
 …

Spot the deadlock!

Thread 1 Thread 2

foo(B, A) {
 lock(&B);
 lock(&A);
 …
 unlock(&A);
 unlock(&B);
 …

foo(A, B) {
 lock(&A);
 lock(&B);
 …
 unlock(&B);
 unlock(&A);
 …

Midterm

• Anything up to Wednesday’s lecture (Feb. 8th)

• Conceptual questions

– Not much computation or math required

• Questions?

