
Section 5

Eric Wu (ericwu@cs)

Section Today

• Administrative stuff

• Homework 1 recap 

• Homework 2 questions

• Project and homework tips

• Semaphores and Monitors (continued)

Administrative Stuff

• Project groups!

– Please PLEASE work in pairs 

– Please email me if your space is not set up by
11:59 pm tonight (Thu Feb 2nd)

– Subversion spaces are in
/projects/instr/12wi/cse451

– Use Tortoise SVN to access
svn+ssh://<CSEnetID>@attu.cs.washington.edu/projects/instr/12wi/cse451/<groupname>

More Administrative Stuff

• Anonymous Feedback Form

– https://catalyst.uw.edu/umail/form/ericwu/3969

• Class mailing list forthcoming…

Homework 2 Questions

• Exercise 2

– A standard Round Robin queue places unique TCB
pointers in the queue.

• Exercise 5

– If you were to write code for wait() and signal(),
how would you do it?

– DO NOT actually write code. (Pseudo-code is fine.)

• Other questions?

Project and Homework Advice

• Skills for managing and
working on large projects

• How to go about designing
your projects and
homework solutions

Borrowed from http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/

http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/
http://worldgnat.wordpress.com/2010/11/12/angry-c-is-angry/

Debugging

• Print to console generously
– Print out variables, static text for conditionals,

sanity checks, etc.

– Be sure to flush the buffer immediately after
printing!

• Sometimes debuggers lie
– Return to the first point

• Use assertions
– Bugs only occur in code that has already executed.

Debugging (continued)

• Differentiate between linker and compiler
errors.

– Linker errors are from bad names and symbols.

– Compiler errors are everything in between.

• Make sure your types are defined before you
use them!

• Check for misspellings and copy existing code
to see if linking works.

Common Project Problems

• “Error occurred in a file that I didn’t edit.”

– Likely meant you corrupted a variable or wrote to
a bad memory address.

• “Code hangs…”

– In project 3, likely a deadlock.

• Any others?

Project and Homework Design

• Design with the user in mind!

– But who is the user?

Project and Homework Design

• Design with the user in mind!

– But who is the user?

• Design for other hackers

– If someone wanted to modify your code, would it be easy
to do?

– Does it belong in a file, class, or function that makes
sense?

– Is your code redundant?

Project and Homework Design

• Design with the user in mind!

– But who is the user?

• Design for other hackers

– If someone wanted to modify your code, would it be easy
to do?

– Does it belong in a file, class, or function that makes
sense?

– Is your code redundant?

• Design for the client

– Is the design optimized for performance and space? Does
it matter?

Semaphores

• Covered in lecture and section

– Questions?

Monitors

• These are programming language constructs

– Essentially a class defined by a language

• Contains methods, shared variables, etc.

• Synchronization is automatically added into the
superclass, API, or encapsulating code

How do monitors work?

• Use a lock to ensure only one thread can enter
the monitor at a time.

– Let’s call this lock the monitor lock.

• Use condition variables to control thread
behavior inside the monitor.

Monitors in a Picture

…
methods waiting queue of threads

executing
thread

shared
data

monitor
lock

Condition Variables

• Synchronization primitives used in monitors

• They use wait() and signal()

– Similar, but not the same purpose as semaphores
wait() and signal()!

Condition Variables

• wait(condition)
– Puts current thread on the waiting queue for

condition.

• signal(condition)
– Wakes up at most one thread from the waiting

queue corresponding to condition.

• broadcast(condition)
– Wakes up all threads on waiting queue

corresponding to condition.

But… wait()!

• Upon entering the monitor, the thread
acquires the monitor lock.

• If the thread calls wait(), it must release the
monitor lock.

– Why?

After the Executing Thread calls wait()

…
methods waiting queue of threads

Waiting
for signal

shared
data

monitor
lock

New thread can
now execute

condition variable

Example: unbounded buffer

add(x)

…

notEmpty Monitor {
 private queue buffer;
 condition notEmpty;

add(x) {
 buffer.add(x);
 signal(notEmpty);
}

remove() {
 if (buffer.empty()) {
 wait(condition variable);
 // current thread stops
 }
 // buffer should be
 // non-empty here
 buffer.remove()
}

remove()

buffer

Monitor Scheduling Choices

• Hoare: signal(condition) means

– Run waiter immediately

• Mesa: signal(condition) means

– Waiter is made ready, but signaler continues

Revisit example: Hoare or Mesa?

add(x)

…

notEmpty Monitor {
 private queue buffer;
 condition notEmpty;

add(x) {
 buffer.add(x);
 signal(notEmpty);
}

remove() {
 if (buffer.empty()) {
 wait(condition variable);
 // current thread stops
 }
 // buffer should be
 // non-empty here
 buffer.remove()
}

remove()

buffer

Monitors by Design

• Which is better: Hoare or Mesa?

• What do we get from monitors? What don’t
we get?

Monitors by Design

• Which is better: Hoare or Mesa?

• What do we get from monitors? What don’t
we get?

• Why don’t monitors resolve deadlocks?

• How to guarantee no deadlocks? Is it
possible?

