Threads, Synchronization, and
Scheduling

Topics for Today

Project 2

— Due tomorrow!

Project 3
— Due Feb. 17th!

Threads
Synchronization
Scheduling

Project 2

Troubleshooting:

e Stock kernel doesn’t run on the VM
— Solution: do not hit reset! Use graceful shutdown.
e Variable scoping issues!

— Solution: only declare global functions or variables

once. All other instances of variables should be
extern.

* Other questions?

Project 3

* Implement a file-copy utility

— This is done entirely in user space. © (or ®)

* Three parts
— Multithreaded + synchronous 1/0
— Single threaded + asynchronous 1/0O

— Performance analysis of these two
implementations

/0 in Windows

* Synchronous

User Code feme' L
M NtReadFile() {
ReadFile(&buf); | wsﬂct):i?gl:sl’tﬁ
)) J
* Asynchronous Kernel Code

NtReadFile() {
User Code / Submit request
ev = CreateEvent() P

}
ReadFile(&buf, ev);

... [/ do whatever Kernel Code

NtWaitForSingleObject() {

Wait for signal /=
} I

WaitForSingleObject(ev)

/0 in Windows

* Advantages of sync 1/O?

* Advantages of async I/O?

/0 in Windows

* Advantages of sync 1/O?

— Easier to program

* Advantages of async I/O?
— Potentially more efficient

— Can also make sync I/O more efficient with
threading! How?

Project 3
Multithreaded + Sync I/O

ReadFile()

ReadFile()
WriteFile() WriteFile()

Thread 1 Thread 2

Project 3
Single Threaded + Async I/O

ReadFile() ReadFile()

WriteFile() WriteFile()

Y
A\ ¥4

Thread 1 WaitForMultipleObjects([ev1, ev2])

Threads

Quick concept checks:

— What resources in memory are shared among
threads?

— In what scenario(s) does multi-threading not
perform better than single-threading?

Amdahl’s Law (Abridged)

Overall performance is given by a weighted proportion of performance increases

across all segments of code. N?,
N, = percent segment of the program
P. = performance change of that segment. P@

]
|
]

Amdahl’s Law (Abridged)

N1
P
30% 40% 30%
2x performance unaffected 2x performance

Amdahl’s Law (Abridged)

0.30 0.40 0.30 Nt
| | = (.70 —
2 1 2 P1
30% 40% 30%
2x performance unaffected 2x performance

—

]
]

Synchronization

* Why do we need it?

Synchronization

* Why do we need it?

— Make data handling safe!
— This was the focus of project 2

Synchronization

Mutexes and Locks

Semaphores

Condition Variables

Monitors (won’t cover in this section!)

Mutexes and Locks

* Implemented in two ways below:

— Spinlocks

* Busy wait (while (...) { continue; }) until lock is released.

* Advantages and disadvantages?

— Blocking/queueing mutexes:

Waiting threads

———————>

T1

T3

T4

Mutex

held = TRUE
activeThread =

12

F

Executing
thread

Semaphores

e Similar to locks/mutexes, but can have more
than one resource.

* Operations:

— wait (Execute thread if enough resources, else put
on waiting queue.)

— signal (Return a resource if no waiting threads,
else execute a thread from waiting queue. Caller
of signal also executes.)

Semaphores

e Similar to locks/mutexes, but can have more
than one resource.

* Operations:

— wait (acquire a resource)

— signal (release a resource)

Semaphores

Executing
threads

T2 | @

Semaphore
Waiting threads 5 | @

I | Free resources: 2

TL| | T3] | T4 o © % | @

Semaphores

 Benefits over mutexes and locks?

e \WWeaknesses?

Semaphores

 Benefits over mutexes and locks?

— Better resource allocation!

e \WWeaknesses?

— Easier to mess up
* Forget to acquire
* Forget to release

* Even more difficult with non one-to-one resource to
acquirer mappings

Scheduling

 Two important decisions:
— When do | reschedule the CPU?
— Who gets the CPU after | reschedule it?

When do | reschedule the CPU?

e Cooperative scheduling

— Reschedule when:
* A thread blocks on I/O
* Athread yields()
* A thread terminates

— Problems?

* Preemptive scheduling
— Reschedules at any time
— Problems?

Who gets the CPU?

* Many algorithms for scheduling

e What are some factors to consider in
scheduling?

Who gets the CPU?

* Many algorithms for scheduling

e What are some factors to consider in
scheduling?

— Not limited to: priority, waiting time, CPU
utilization, average execution time, ...

— See lecture slides!

