
Threads, Synchronization, and
Scheduling

Eric Wu (ericwu@cs)

Topics for Today

• Project 2

– Due tomorrow!

• Project 3

– Due Feb. 17th!

• Threads

• Synchronization

• Scheduling

Project 2

Troubleshooting:

• Stock kernel doesn’t run on the VM

– Solution: do not hit reset! Use graceful shutdown.

• Variable scoping issues!

– Solution: only declare global functions or variables
once. All other instances of variables should be
extern.

• Other questions?

Project 3

• Implement a file-copy utility

– This is done entirely in user space.  (or )

• Three parts

– Multithreaded + synchronous I/O

– Single threaded + asynchronous I/O

– Performance analysis of these two
implementations

I/O in Windows
• Synchronous

• Asynchronous

User Code
…
ReadFile(&buf);
…

Kernel Code
…
NtReadFile() {
 Submit request
 Wait for signal
}

User Code
ev = CreateEvent()
ReadFile(&buf, ev);

… // do whatever

WaitForSingleObject(ev)
…

Kernel Code
…
NtReadFile() {
 Submit request
}

Kernel Code
…
NtWaitForSingleObject() {
 Wait for signal
}

I/O in Windows

• Advantages of sync I/O?

• Advantages of async I/O?

I/O in Windows

• Advantages of sync I/O?

– Easier to program

• Advantages of async I/O?

– Potentially more efficient

– Can also make sync I/O more efficient with
threading! How?

Project 3
Multithreaded + Sync I/O

Thread 1 Thread 2

Buffer Buffer

ReadFile() ReadFile()

WriteFile() WriteFile()

Project 3
Single Threaded + Async I/O

Thread 1

Buffer Buffer

ReadFile() ReadFile()

WriteFile() WriteFile()

WaitForMultipleObjects([ev1, ev2])

Threads

• Quick concept checks:

– What resources in memory are shared among
threads?

– In what scenario(s) does multi-threading not
perform better than single-threading?

Amdahl’s Law (Abridged)

• Overall performance is given by a weighted proportion of performance increases
across all segments of code.

• Ni = percent segment of the program
• Pi = performance change of that segment.

Amdahl’s Law (Abridged)

30%
2x performance

40%
unaffected

30%
2x performance

Amdahl’s Law (Abridged)

30%
2x performance

40%
unaffected

30%
2x performance

Synchronization

• Why do we need it?

Synchronization

• Why do we need it?

– Make data handling safe!

– This was the focus of project 2

Synchronization

• Mutexes and Locks

• Semaphores

• Condition Variables

• Monitors (won’t cover in this section!)

Mutexes and Locks

• Implemented in two ways below:

– Spinlocks

• Busy wait (while (…) { continue; }) until lock is released.

• Advantages and disadvantages?

– Blocking/queueing mutexes:

Mutex

held = TRUE
activeThread =

Waiting threads

T1 T3 T4
T2 Executing

thread

Semaphores

• Similar to locks/mutexes, but can have more
than one resource.

• Operations:

– wait (Execute thread if enough resources, else put
on waiting queue.)

– signal (Return a resource if no waiting threads,
else execute a thread from waiting queue. Caller
of signal also executes.)

Semaphores

• Similar to locks/mutexes, but can have more
than one resource.

• Operations:

– wait (acquire a resource)

– signal (release a resource)

Semaphores

Semaphore

Free resources: 2

Waiting threads

T1 T3 T4

T2

T5

T6

Executing
threads

Semaphores

• Benefits over mutexes and locks?

• Weaknesses?

Semaphores

• Benefits over mutexes and locks?

– Better resource allocation!

• Weaknesses?

– Easier to mess up

• Forget to acquire

• Forget to release

• Even more difficult with non one-to-one resource to
acquirer mappings

Scheduling

• Two important decisions:

– When do I reschedule the CPU?

– Who gets the CPU after I reschedule it?

When do I reschedule the CPU?

• Cooperative scheduling
– Reschedule when:

• A thread blocks on I/O

• A thread yields()

• A thread terminates

– Problems?

• Preemptive scheduling
– Reschedules at any time

– Problems?

Who gets the CPU?

• Many algorithms for scheduling

• What are some factors to consider in
scheduling?

Who gets the CPU?

• Many algorithms for scheduling

• What are some factors to consider in
scheduling?

– Not limited to: priority, waiting time, CPU
utilization, average execution time, …

– See lecture slides!

