

cse451 Project #3.doc Page 1 of 4 1/21/2012

CSE451 Winter 2012 Project #3

Out: January 25, 2012

Due: February 17, 2012 by 11:59 PM (late assignments will lose ½ grade point per day)

Objectives

In the first two projects you learned about some of the internals of the Windows

Operating System. Your third project, done in groups of two, will practice using threads

and synchronization to write a multi-threaded multi-buffered copy file program. The

principal objectives of this project are:

1. To practice thinking and writing multi-threaded applications

2. Design and implement a multi-buffering program

3. Working on a group project

4. Look at performance aspects

Getting Started

Unlike the previous projects this project involves writing a single user mode program

Windows program in C. You may use Visual Studio to do the development. Located in

O:\cse\courses\cse451\12wi\Project3 is the base skeleton code to get you started.

Things you will need to know how to do are:

1. Manipulate files with open, create, read, write, and close.

2. Start, and synchronize threads

3. Time your operation

Your assignment:

You are writing a command line program to copy one or more files to another location.

The skeleton code already parses the command line and calls two blank routines that you

will need to supply. The syntax for the program is:

MTCOPY [/T:number] [/B:size] [/A] [/V] <source>+ destination

 /T:number - Specifies the number of threads and buffers to use

in the copy function. The default value is 1.

 /B:size - Specifies the maximum buffer size to use in the copy

function. The default value is 4096.

 /A – Specifies if the I/O is to be issued asynchronously. The

default value is to do synchronous I/O.

 /V – Verbose switch used to report the total time needed to

copy the file(s). It also prints the MB per second throughput.

cse451 Project #3.doc Page 2 of 4 1/21/2012

 source - Specifies one or more source files to be copied. The

program handles wildcard provided it is linked with the

wsetargv.obj that is in the project directory.

 destination - Specifies the directory for the new file(s).

The program is to open and read each source file, and create and write each destination

file. The two routines you need to write are:

 MtFileCopy(ThreadCount, BufferSize, SrcDst, Verbose), and
 MtFileCopyAsync(ThreadCount, BufferSize, SrcDst, Verbose)

Where:

 ThreadCount – Specifies in the synchronous case the number of

threads used to do the copy. In the asynchronous case it is the

number of buffers used to do the copy.

 BufferSize – Specifies the buffer size.

 SrcDst – Specifies each source and destination file. SrcDst is

a pointer to an array of pointers (which is null terminated).

Each pointer in the array points to a pair of pointers. The

paired pointers point to the source and destination file names.

A diagram might help illustrate this.

 +--------+ +---------+ +---------+

 | SrcDst |->| 1stFile |------>| SrcName | -> “Letter.doc “

 +--------+ | 2ndFile |->... | DstName | -> “z:bin\letter.doc”

 | 3rdFile |->... +---------+

 | Null |

 +---------+

In this example, SrcDst points to an array containing three

pointers. 1stFile points to two more pointers, each pointing to a

string. The source file is “Letter.doc” and the destination file

is “z:bin\letter.doc”.

 Verbose – Specifies the function is to printout throughput

statistics.

Your goal is to achieve as much parallelism and efficiency as possible utilizing the

specified number of threads and buffer size. In the synchronous case each thread will

have exactly one buffer that it uses to read and write data. MtFileCopy must do all I/O

synchronously and should be smart enough to not use 10 threads to copy a single two

byte file; but it might use all of its threads to copy a single 1GB file or to copy 100 small

files. MtFileCopyAsync must use a single thread to do all I/O asynchronously and be

event based.

After completing the program your continued assignment is to analyze its performance

using various combinations of threads, files, buffer sizes, file sizes, and mixed media.

There is a command script in Project3’s distribution directory called “mtcopytest.cmd”

cse451 Project #3.doc Page 3 of 4 1/21/2012

that tests various combinations. Feel free to use this command script as your test base,

under the usual disclaimer that “your millage may vary.” It has been tested on the lab

machines. Do not let this sample command script restrict your creativity. Be creative in

your testing.

You will need to do a complete concise write-up reporting your results in order to receive

full credit.

N.B. it is easy to test the correctness of your program by comparing the source and

destination files.

Also look at the sample function called CSE451Cat to see an example of how open and

read file, and how to compute time differences.

Turn-in:

Be prepared to turn in the following

1. Executables images of your test program.

2. Source code for your test program

3. A write up listing the two students who worked on the project and your performance

analysis.

You'll be submitting the source code, executables, and write-up to Catalyst.

Grading Standard:

The following guideline will be used to grade the projects

o An “E” for turning in nothing and/or doing nothing

o A “D” for a project that is dysfunctional. It may not compile or it gives completely

bogus results

o A “C” for a project that is barely functional. Or it might miss in a few cases but

generally it is okay. Or you can sort of understand how the code works but it is not

clear

o A “B” for a project that is functionally complete. It is clean and does the job but

without any real elegance. It is a meat and potatoes type solution. So a “B” simply

accomplishes the objectives, but nothing fancy

o An “A” is for projects that go well beyond just being functional. They are works of

art. We can look at an “A” project and it would stand high above the “B” project. An

“A” also requires a complete analysis of your program’s performance.

https://catalysttools.washington.edu/collectit/dropbox/gdkimura/2240

cse451 Project #3.doc Page 4 of 4 1/21/2012

Addendum

I suggest that you look at the MSDN website (http://msdn.microsoft.com/en-

us/library/default.aspx) for a complete description of the Win32 APIs.

File operations

Three basic file operations are: CreateFile, ReadFile, and WriteFile. You will also need

to look through the File Management Functions listed on the MSDN website to see the

other functions that will query/set file sizes and enumerate directories.

File operations can be a little tricky because one of the attributes of an opened file is

whether you want to do synchronous or asynchronous I/O. Synchronous Read and Write

calls do not return until the operation completes; whereas, asynchronous Read and Write

calls return immediately, and the user is later signaled via an event when the operation

completes. In Windows terminology this is also called Overlapped I/O.

Now, according to the MSDN website there is a serialization restriction if you use

multiple threads to issue multiple requests to a file handle opened for synchronous I/O.

What this means is that while you may be attempting to read or write from multiple

places in a file simultaneously it will be serialized if you use a handle opened for

synchronous I/O. The way I would work around this restriction is to use multiple handles

(i.e., I would call CreateFile multiple times on the same file with a proper share mode).

Then I can issue multiple I/O on a single file and know that they will not be serialized.

Thread operations and synchronizations

The basic operations to create a new thread, and synchronize threads using mutexes are:

CreateThread, CreateMutex, ReleaseMutex, WaitForSingleObject, and

WaitForMultipleObjects.

http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx

