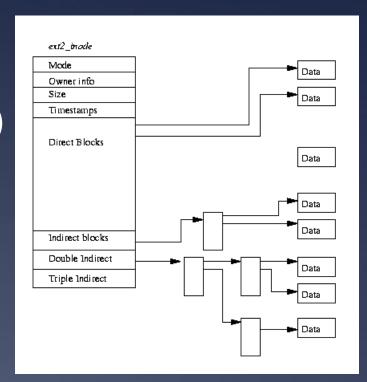

CSE 451: Operating Systems Section 8

Project 2b wrap-up, ext2, and Project 3

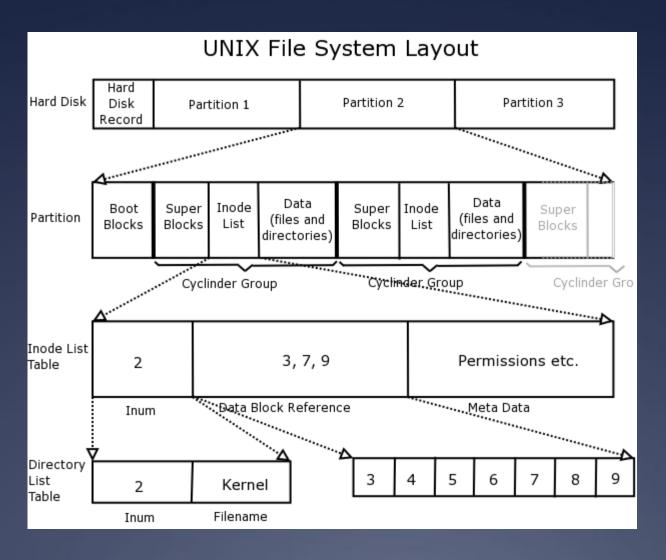
Project 2b


- * Make sure to read thoroughly through the requirements for the writeup in part 6 and answer every question
- * There are multiple ways of measuring throughput that you should discuss
 - * Responses/second
 - * Bytes transferred/second (average throughput per client and total average throughput)
- * Any lingering questions?

Linux file system layers

Inodes

- * <u>Inode</u>: a structure maintaining all metadata about a file (or directory)
 - * Inode number (unique ID of inode)
 - * Permissions, timestamps
 - * Pointers to data blocks
- * Inode does *not* contain: name of file
 - * Where is it actually stored?
 - * One or more file names can point (link) to the same inode. When will this occur?


Inode structure

- * Remember, inodes themselves are stored in blocks
 - * What's the size of the inode struct?
 - * So how many inside a 1K block?
- * Max number of inodes (max number of files) usually decided when file system is formatted
 - * mkfs heuristic: create an inode for every three data blocks

Directories

- * <u>Directory entry</u> ("dirent"): stores the file inode number, file name, and file type
 - * Directory entries are stored in data blocks
- * <u>Directory</u>: A list of directory entries
 - * An inode with a directory i_mode attribute (check LINUX_S_ISDIR()) stores directs in its data blocks

ext2 organization

Superblock

- * Superblock always starts at byte 1024
- * Master filesystem structure in ext2
- * Stores global filesystem constants:
 - * Block size
 - * Inode size
 - * Number of blocks
 - * Number of inodes
 - * ...and much more
- Do not hardcode filesystem constants into your code! Use superblock information instead.

Block groups

- * Block groups store:
 - * A copy of the superblock (why?)
 - * The block group descriptor table
 - * Immediately proceeds the superblock
 - * Contains the block numbers of the block bitmap, inode bitmap, and inode table among other things
 - * A block bitmap (used vs. free blocks)
 - * An inode bitmap (used vs. free inodes)
 - * An inode table (the inodes themselves)
 - * The actual data blocks

Data blocks

- * Blocks for regular files contain file data
- * Blocks for directories contain directory entries:

Data block for /

Dir. entry	Field	Value
0	Inode	1
	Name	w.//
1	Inode	1
	Name	\\
2	Inode	2
	Name	"etc"
3	Inode	3
	Name	"bin"
4	Inode	0
	Name	0

5/17/12

};

Example data block usage

* For a 4MB file system with 1KB blocks, with hierarchy:

```
etc
passwd
fstab
bin
sh
date
```

File/Directory	Size	Data Blocks
/	4 entries + 1 null entry	1
/etc	4 entries + 1 null entry	1
/bin	4 entries + 1 null entry	1
/etc/passwd	1024 bytes	1
/etc/fstab	100 bytes	1
/bin/sh	10,000 bytes	10
/bin/date	5,000 bytes	5
	Total:	20

For more ext2 reading

- *A master reference is available at http://www.nongnu.org/ext2-doc/ext2.html
- *Some other helpful resources:
 - * http://homepage.smc.edu/morgan_david/cs40/ analyze-ext2.htm
 - * http://eecs.wsu.edu/~cs460/cs560/ext2fs.html
 - * Wikipedia also has a decent explanation:
 http://en.wikipedia.org/wiki/Ext2#ext2 data structures

Project 3: Undelete

- *Out: Friday 5/17 once I have it ready
- *Due: Saturday 6/2 at 11:59pm
- *Same groups you've been with previously
- *Some serious understanding is required, so read, discuss with your teammates, read some more, discuss, plan, then execute

Project 3: Undelete

- *Your task: recover deleted files in ext2 filesystems
- *How is this possible?
 - * Even if inode links are removed, inodes and data might still be present
 - * Make a best attempt at recovery of lost files—some are corrupted and beyond hope, so you won't be able to recover them

Project 3: Undelete

- *Tools at your disposal:
 - * A header file with common ext2 definitions
 - * open(), read(), lseek(), write(), close()
 - * This means you'll be doing direct file IO on a filesystem file
 - You are permitted to keep only a small fixed number of inodes in memory at once (otherwise recovery of large files would be infeasible)
 - * A utility for creating and mounting ext2 filesystems of various sizes
 - * A program for printing out block information for an ext2 filesystem file

Tips

- *The filesystem creation tool requires at least 60 1kB blocks or it will fail
- *Think carefully about how to tell whether an inode is deleted. (Hint: you'll need to use the inode bitmap)
- Do not hardcode any ext2 constants. Use only those provided in headers and those from the superblock

Tips

- * Pete and I will give out some additional test files, but you should also create your own sample filesystems using the provided tool
- Make sure to restore the accessed and modified times of files as well as their contents
- * Test filesystems with indirect data blocks
- * Test your code by restoring filesystems with things like large deleted JPGs that are easy to check (visually) for corruption

Tips

- *If your group emails a plan of your approach to the project to Pete and me by class next Wednesday 5/23, we will review it and give you feedback
 - * Take advantage of this; it will save you a lot of grief leading up to the deadline
 - * Writing a plan is a great way to force yourself to learn the concepts

Questions?