CSE 451: Operating Systems

Section 7:
Project 2b; Virtual Memory

Project 2a grading

* Grades will be sent out later tonight

5/10/12

Debugging threaded programs

* What techniques have you used?
* printf statements: macros are helpful

#define print debug(f, a...) do {
fprintf (stdout, "DEBUG: %lu: %s: " £,
pthread self(), _ func_, ##a);
fflush(stdout);
} while (0)

~

5/10/12

Debugging threaded programs

* Other tools:
* gdb
* Deadlock vs. corruption
* To enable core dumps: ulimit -c unlimited

* helgrind? DRD?
* MS Visual Studio; Intel Inspector XE; ...

* What does the textbook say?

* We've mostly discussed thread correctness;
what about thread performance?

5/10/12

5/10/12



Thread pools

sioux thread pool

Task Queue
H}(((((o » O l

Thread .
Pool O O O =2
Completed Tasks |

-~ (@@ «— O «

©)
©)

o

* What is the “type” of a task?
* What function do the threads run?

* Can we make this abstract / generic?

5/10/12

struct thread pool ({
queue request queue;
sthread cond t request ready;

}i
struct request {

int next conn;

}i

// New request arrives:

// enqueue request, signal request ready
// Worker threads:
// dequeue, run: handle request (request);

5/10/12

Generic thread pool

struct thread pool {
queue task queue;
sthread cond t work to do;
}i
typedef void (*work fn) (void *);
struct task {
work fn work;
void *arg;

b

// New work arrives:

// enqueue new task, signal work to do
// Worker threads:
// dequeue, run: task->work (task->arg);

5/10/12

Thread performance

[ I e I e

* Where might there be performance
bottlenecks with a thread pool?
* Where are threads running?
* What do threads have to do to access thread pool?
* Where is the work queue stored?

Image from: http://www.cis.upenn.edu/~milom/cis501-Fall09/lectures/09_multicore.pdf

8

5/10/12



Synchronization is expensive

* Explicit synchronization

% Critical sections protected by mutexes, condition
variables and queues

* Strategies: reduce critical section size; atomic
updates / lock-free data structures; RCU; ...

* Implicit synchronization
* Through cache coherence / memory hierarchy
* Strategies: partitioning / sharding

5/10/12

Debugging thread performance

* How can we debug thread performance?
* Intuition?
* Profiling tools:
* cachegrind / callgrind
* Intel VTune Amplifier

5/10/12

sioux web server

Preemption (part 5)

* Make the web server multithreaded
* Create a thread pool
* Suggestion: create separate thread_pool.h, thread_pool.c
* Wait for a connection
% Find an available thread to handle the request
* Request waits if all threads busy

* Once the request is handed to a thread, it uses the
same processing code as before

* Use pthreads for parts 4 and 6: we won’t test
sioux with sthreads!

5/10/12

* Remember this tip from previous section:

* One way to think about preemption-safe thread
library:
* Disable/enable interrupts in “library” context
* Use atomic locking in “application” context

* Does locking / unlocking a mutex happen in
“library context” or “application context”?

5/10/12

5/10/12



How not to implement mutexes

sthread user mutex lock (mutex)

splx (HIGH) ;

if (mutex->held) {
enqueue (mutex->queue, current thread);
schedule next thread();

} else {
mutex->held = true;

}

splx (LOW) ;

510112 13

How not to implement mutexes

* Don’t turn it into a spinlock:
sthread user mutex lock (mutex)
while (atomic_test and set(
& (mutex->available))) {

* This is also wrong: where could we get

preempted that could lead to deadlock?
sthread user mutex lock (mutex)
while (atomic_test and set(
& (mutex->available)))
enqueue (mutex->queue, current thread);
schedule next thread();

}

5/10/12

}

{

So how does one implement mutexes?

Project 2b

* Need to lock around the critical sections in the
mutex functions themselves!

* Your struct sthread mutex will likely
need another member for this

* For hints, re-read lecture slides:
* Module 7: Synchronization (slide 20 forward)
* Module 8: Semaphores

% Similar hints apply for condition variables

5/10/12 15

* Any more questions?

5/10/12

5/10/12



Virtual memory

Process’ )
Process’ VM: page table  Physical memory:

\

page frame #

e ——
How can we use paging to set up sharing of memory between two
processes?

(slides from Chernyak Fall 2009) 0112 17

eno Activity Monitor =
O (“) 6 Al Processes :]Q- Filte
Quit Process _Inspect _Sample Process Show Filter
PID  Process Name User %CPUw| Threads  Real Mem  Kind Virtual Mem
166 activitymonitord root 5.5 1 7.4 MB Intel (64 bit) 34.4M8
0 kernel_task root 3.4 57 246.4MB Intel 56.2 M8
6072 Last.fm Peter 17 8 32.7 M8 Intel 45.0 M8
154 [E Activity Monitor Peter 10 2 26.2 M8 Intel (64 bit) 36.8 M8
4958 Google Chrome Renderer Peter 08 6 95.4 MB Intel 131.2M8
4960 Google Chrome Renderer Peter 0.7 6 185.0 M8 Intel 212.9M8
4950 € Google Chrome Peter 0.7 26 218.8 MB Intel 317.9M8
22602 @ Microsoft PowerPoint Peter 0.7 10 318.7MB Intel 200.1 MB
78 WindowServer _windowserver 06 H 124.5 MB Intel (64 bit) 615M8 |
23 mDNSResponder _mdnsresponder 0.4 3 3.2 MB Intel (64 bit) 40.8MB |
46 hidd root 03 4 1.6 M8 Intel (64 bit) 22.1m8
21635 Google Chrome Renderer Peter 0.2 H 103.7 M8 Intel 146.1 M8
24189 @ TexeWrangler Peter 0.2 6 31.6 M8 Intel 37.9m8
159 VMware Fusion Helper Peter 0.1 5 28.0MB Intel (64 bit) 50.2 M8
37 usbmuxd _usbmuxd 0.1 3 4.3 MB Intel (64 bit) 40.6 M8
112 Dock Peter o1 4 20.6 M8 Intel (64 bit) 27.5 M8
22664 Google Chrome Renderer Peter 0.1 s 132.9M8 Intel 131.2M8
16073 Google Chrome Renderer Peter 0.1 3 137.7 M8 Intel 165.1M8

CPU_| System Memory | Disk Activity _ Disk Usage _ Network

free: a21M3 [0 VMsize: 21964 GB
Wired: 6265M8 | M Pageins: 25.30GB ’
Active: Page outs: 60.8 M8
Inactive: 1.09 C8 L Swap used:  106.5 MB
3.75GB
Used: 3.96G3

Page replacement algorithms

*  FIFO (First in/first out)
* Replace the oldest page with the one being paged in
* Not very good in practice, suffers from Belady’s Anomaly

* Second-Chance (Modified FIFO)
*  FIFO, but skip referenced pages
*  VAX/VMS used this

* Random
* Better than FIFO!

* NFU (Not Frequently Used)
* Replace the page used the least number of times
* Better variation: Aging ensures that pages that have not been used for a while go away.

* NRU (Not Recently Used)
* Replace a page not used since last clock cycle

* LRU (Least Recently Used)
* Replace the least recently used page
% Works well but expensive to implement. (More efficient variants include LRU-K)

* LRU Clock (Modified LRU)

* Replace the least recently used page, with a hard limit on the max time since used

* Clairvoyant
* Replace the page that’s going to be needed farthest in the future.
5/10/12 19

5/10/12 18
Example of Belady’s anomaly
Sequence of
page requests:
3 physical page
frames:
Page faults (in red): 9
5/10/12 20

5/10/12



Example of Belady’s anomaly

Sequence of
page requests:

4 physical page

frames:

Page faults (in red): 10

5/10/12

21

5/10/12



