
CSE 451: Operating Systems

Section 6

Project 2b

Midterm

Scores are up on Catalyst and midterms
were handed back on Wednesday in class

Talk to Ed or me (Elliott) about grading
questions

Office hours are the best time for this

5/3/12 2

Project 2a learnings

What sort of interesting behavior did you
see in experimenting with test-burgers?

What was the hardest part of the library to
implement?

5/3/12 3

Project 2b

Parts 4, 5 and 6 of project 2

Due at 11:59pm, Friday May 18

5/3/12 4

Part 4: web server

web/sioux.c – singlethreaded web server

Read in command line args, run the web server
loop

5 5/3/12

Part 4: web server

web/sioux_run.c – the web server loop

Open a socket to listen for connections
(listen(2))

Wait for a connection (accept(2))

Handle connection:

 Parse the HTTP request

 Find and read the requested file

 Send the file back

 Close the connection

6 5/3/12

Thread pools

Image from http://en.wikipedia.org/wiki/Thread_pool_pattern
More info: http://www.ibm.com/developerworks/java/library/j-jtp0730.html

7 5/3/12

http://en.wikipedia.org/wiki/Thread_pool_pattern
http://www.ibm.com/developerworks/java/library/j-jtp0730.html
http://www.ibm.com/developerworks/java/library/j-jtp0730.html
http://www.ibm.com/developerworks/java/library/j-jtp0730.html

What you need to do

Make the web server multithreaded

Create a thread pool

 Suggestion: create separate thread_pool.h,
thread_pool.c

Wait for a connection

 Find an available thread to handle the request

 Request waits (where?) if all threads busy

Once the request is handed to a thread, it uses
the same processing code as before

 See web_runloop() in sioux_run.c
8 5/3/12

Hints

Each connection is identified by a socket file
descriptor returned by accept(2)

 File descriptor (fd) is just an int

Threads should sleep while waiting for a
new connection

Condition variables are perfect for this

9 5/3/12

Hints

Don’t forget to protect any global variables

Use mutexes and CVs from part 2

Develop and test with pthreads initially

Use only the sthread.h interface

Mostly modify sioux_run.c, and your own
files

10 5/3/12

Part 5: preemption

What we give you (see sthread_preempt.c):

Timer interrupts

 Function to turn interrupts on and off

 Synchronization primitives
atomic_test_and_set, atomic_clear

 x86/amd64 architectures only

11 5/3/12

Part 5: preemption

What you have to do:

Add code that will run every time a timer
interrupt is generated

Add synchronization to your part 1 and part 2
implementations so that everything works with
preemptive thread scheduling

Can be done independently of part 4

12 5/3/12

sthread_preempt.h

/* Start preemption - func will be called

 * every period microseconds

 */

void sthread_preemption_init

 (sthread_ctx_start_func_t func,

 int period);

/* Turns interrupts on (LOW) or off (HIGH)

 * Returns the last state of the

 * interrupts

 */

int splx(int splval);

13 5/3/12

sthread_preempt.h

/* atomic_test_and_set - using the native

 * compare and exchange on the Intel x86.

 *

 * Example usage:

 * lock_t lock;

 * while(atomic_test_and_set(&lock))

 * {} // spin

 * _critical section_

 * atomic_clear(&lock);

 */

int atomic_test_and_set(lock_t *l);

void atomic_clear(lock_t *l);

14 5/3/12

Signals

Used to notify processes of events
asynchronously

Every process has a signal handler table

When a signal is sent to a process, OS
interrupts that process and calls the handler
registered for that signal

15 5/3/12

Signal manipulation

A process can:

Override the default signal handlers using
sigaction(2)

Block / unblock signals with sigprocmask(2)

 Send a signal via kill(2)

Signals:
 SIGINT (CTRL-C), SIGQUIT (CTRL-\),

SIGKILL, SIGFPE, SIGALRM, SIGSEGV…

16 5/3/12

What you need to do

Add a call to sthread_preemption_init() as
the last line in your sthread_user_init()
function

 sthread_preemption_init() takes a pointer to a
function that will be called on each timer
interrupt

 This function should cause thread scheduler to switch
to a different thread!

17 5/3/12

What you need to do

Add synchronization to critical sections in
thread management routines

Think: what would happen if the code was
interrupted at this point?

 Would it resume later with no problems?

 Could the interrupting code mess with any variables
that this code is currently using?

Don’t have to worry about simplethreads code
that you didn’t write (i.e. sthread_switch):
already done for you

18 5/3/12

What you need to do

Before doing a context switch, interrupts
should be disabled to avoid preemption.
How can they be reenabled after the switch?

Hint: Think of the possible execution paths

19 5/3/12

Interrupt disabling

Non-thread-safe

/* returns next thread

 * on the ready queue */

sthread_t

sthread_user_next() {

 sthread_t next;

 next = sthread_dequeue

(ready_q);

 if (next == NULL)

 exit(0);

 return next;

}

Thread-safe

sthread_t

sthread_user_next() {

 sthread_t next;

 int old = splx(HIGH);

 next = sthread_dequeue

 (ready_q);

 splx(old);

 if (next == NULL)

 exit(0);

 return next;

}

20 5/3/12

Interrupt disabling

Thread-safe

sthread_t

sthread_user_next() {

 sthread_t next;

 int old = splx(HIGH);

 next = sthread_dequeue

 (ready_q);

 splx(old);

 if (next == NULL)

 exit(0);

 return next;

}

21 5/3/12

Why do we call
splx(old) after
dequeuing instead of
just splx(LOW)?

Atomic locking

So what is atomic_test_and_set()
for?

Primarily to implement higher-level
synchronization primitives (mutexes, CVs)

One way to think about preemption-safe
thread library:

Disable/enable interrupts in “library” context

Use atomic locking in “application” context

22 5/3/12

Race conditions and testing

How can you test your preemption code?

How can you know that you’ve found all of
the critical sections?

23 5/3/12

Part 6: report

Covers all parts of project 2

Discuss your design decisions

Performance evaluation:

Measure throughput and response time of your
web server using web benchmarking tool

 Vary the number of threads and number of “clients”

Present results in graphical form

Explain results: expected or not?

24 5/3/12

Project 2 questions?

5/3/12 25

