
CSE 451: Operating Systems

Section 4

Project 2 Intro; Threads

Project 1

Congratulations, you’re all kernel hackers
now!

We’re going to give you a break and have
you do some userspace work 

4/19/12 2

Project 2: user-level threads

Part A: due Wednesday, May 2 at 11:59pm
 Implement part of a user thread library

Add synchronization primitives

 Solve a synchronization problem

Part B: due Friday, May 18 at 11:59pm
 Implement a multithreaded web server

Add preemption

Get some results and write a (small) report

3 4/19/12

Project 2 notes

Start EARLY!

 It’s loooooooong

Read the assignment carefully

Read it again

Understand the skeleton code

Use the same groups as for project 1

4 4/19/12

Project 2 tips

Understand what the provided code does
for you

Division of work

Part 3 can be completed without parts 1 and 2

More tools

ddd

 (Or just gdb if you’re not a fan of GUIs)

5 4/19/12

6

Simplethreads

We give you:
 Skeleton functions for thread interface

Machine-specific code (x86, i386, PowerPC)
 Support for creating new stacks

 Support for saving regs/switching stacks

A queue data structure (why?)

Very simple test programs
 You should write more, and include them in the turnin

A single-threaded web server

4/19/12

7

Simplethreads code structure

include/sthread.h

Other apps Web server

(web/sioux.c)

test/*.c

lib/sthread_user.h

lib/sthread_user.c

lib/sthread_ctx.c

lib/sthread_ctx.h

You write this

sthread_switch_i386.h

sthread_switch_powerpc.h

lib/sthread_switch.S

lib/sthread_queue.c

lib/sthread_queue.h

lib/sthread_preempt.c

lib/sthread_preempt.h

4/19/12

8

Pthreads

Pthreads (POSIX threads) is a preemptive,
kernel-level thread library

Simplethreads is similar to Pthreads

Project 2: compare your implementation
against Pthreads

 ./configure --with-pthreads

4/19/12

9

Thread operations

What functions do we need for a userspace
thread library?

4/19/12

10

Simplethreads API

void sthread_init()

 Initialize the whole system
sthread_t sthread_create(func start_func,

 void *arg)

 Create a new thread and make it runnable
void sthread_yield()

 Give up the CPU
void sthread_exit(void *ret)

 Exit current thread
void* sthread_join(sthread_t t)

 Wait for specified thread to exit

4/19/12

11

Simplethreads internals

Structure of the TCB:
 struct _sthread {

 sthread_ctx_t *saved_ctx;

 /**

 * Add your fields to the thread

 * data structure here.

 */

 };

4/19/12

12

Sample multithreaded program

 (this slide and next – see test-create.c)

void *thread_start(void *arg) {

 if (arg) {

 printf(“in thread_start, arg = %p\n”,

 arg);

 }

 return 0;

}

...

4/19/12

13

Sample multithreaded program

int main(int argc, char *argv[]) {

 sthread_init();

 for(i = 0; i < 3; i++) {

 if (sthread_create(thread_start,

 (void *)&i) == NULL) {

 printf("sthread_create failed\n");

 exit(1);

 }

 }

 // needs to be called multiple times

 sthread_yield();

 printf("back in main\n");

 return 0;

}
4/19/12

14

Managing contexts

(Provided for you in project 2)

Thread context = thread stack + stack
pointer

sthread_new_ctx(func_to_run)

 creates a new thread context that can be switched to
sthread_free_ctx(some_old_ctx)

 Deletes the supplied context
sthread_switch(oldctx, newctx)

 Puts current context into oldctx

 Takes newctx and makes it current

4/19/12

15

How sthread_switch works

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread 2…

Thread 2

registers

Thread 1 regs
4/19/12

16

Push old context

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

17

Save old stack pointer

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

18

Change stack pointers

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

19

Pop off new context

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers

Thread 2 regs
4/19/12

20

Done; return

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers  What got switched?

 RSP

 PC (how?)

 Other registers

Thread 2 regs
4/19/12

Adjusting the PC

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

 Thread 2 (running):

sthread_switch(t2,...);

0x800: printf(“test 2”);

Thread 1

registers

 ret pops off the new

return address!

ra=0x800

 PC

 Thread 1 (stopped):

sthread_switch(t1,t2);

0x400: printf(“test 1”);

ra=0x400

21

22

Thread joining

With Pthreads (and Sthreads):

Master thread calls join on worker thread

 Join blocks until worker thread exits.

 Join returns the return value of the worker
thread.

4/19/12

23

The need for synchronization

Thread safety:

An application's ability to execute multiple
threads simultaneously without "clobbering"
shared data or creating "race" conditions

4/19/12

24

Synchronization primitives:

mutexes
sthread_mutex_t sthread_mutex_init()

void sthread_mutex_free(sthread_mutex_t lock)

void sthread_mutex_lock(sthread_mutex_t lock)

 When returns, thread is guaranteed to acquire lock
void sthread_mutex_unlock(

 sthread_mutex_t lock)

4/19/12

25

Synchronization primitives:

condition variables
sthread_cond_t sthread_cond_init()

void sthread_cond_free(sthread_cond_t cond)

void sthread_cond_signal(sthread_cond_t cond)

 Wake-up one waiting thread, if any
void sthread_cond_broadcast(

 sthread_cond_t cond)

 Wake-up all waiting threads, if any
void sthread_cond_wait(sthread_cond_t cond,

 sthread_mutex_t lock)

 Wait for given condition variable

 Returning thread is guaranteed to hold the lock

4/19/12

26

Things to think about

How do you create a thread?
How do you pass arguments to the thread’s start

function?
 Function pointer passed to sthread_new_ctx() doesn’t

take any arguments

How do you deal with the initial (main)
thread?

How do you block a thread?

4/19/12

27

Things to think about

When and how do you reclaim resources for
a terminated thread?
Can a thread free its stack itself?

Where does sthread_switch return?

Who and when should call sthread_switch?

What should be in struct _sthread_mutex,
struct _sthread_cond?

4/19/12

28

Things to think about

Working with synchronization: When does it
make sense to disable interrupts?
Which actions are atomic at the application level

versus at the thread level?

When using forkbomb, run “ulimit -Su 64” to
limit the number of processes/threads
Allows you to log in from another session even if

you hit the above limit

Add it to your .bash_profile so it happens
automatically

4/19/12

29 4/19/12

