CSE 451: Operating Systems

Project 1

Congratulations, you’re all kernel hackers
now!

We’re going to give you a break and have
you do some userspace work ©

4/19/12

Project 2: user-level threads

Part A: due Wednesday, May 2 at 11:59pm
* Implement part of a user thread library

* Add synchronization primitives

* Solve a synchronization problem

Part B: due Friday, May 18 at 11:59pm

* Implement a multithreaded web server
* Add preemption
* Get some results and write a (small) report

4/19/12

Project 2 notes

Start EARLY!

* It's loooooooong

* Read the assignment carefully
* Read it again

* Understand the skeleton code

Use the same groups as for project 1

4/19/12

Project 2 tips

Understand what the provided code does
for you

Division of work
* Part 3 can be completed without parts 1 and 2

More tools
* ddd
* (Or just gdb if you’re not a fan of GUIs)

4/19/12

4/19/12

Simplethreads

We give you:
* Skeleton functions for thread interface

* Machine-specific code (x86, i386, PowerPC)

Support for creating new stacks
Support for saving regs/switching stacks

* A queue data structure (why?)

* Very simple test programs
You should write more, and include them in the turnin

* A single-threaded web server

Simplethreads code structure

test/*.c Web server Other apps

(web/sioux.c) /

include/sthread.h

You write this ——

lib/sthr¢ad user.h

ID/sthread _queue.c ID/sthrg¢ad_Ctx.c

[aiveas swichs |

sthread_switch_i386.h

Ib/sthread_preempt.c

sthread_switch_powerpc.h

4/19/12

Pthreads

Pthreads (POSIX threads) is a preemptive,
kernel-level thread library

Simplethreads is similar to Pthreads

Project 2: compare your implementation
against Pthreads

* ./configure --with-pthreads

4/19/12

Thread operations

What functions do we need for a userspace
thread library?

4/19/12

Simplethreads API

vold sthread init ()

Initialize the whole system
sthread t sthread create(func start func,
volid *arqg)

Create a new thread and make it runnable
vold sthread yield()

Give up the CPU

void sthread exit (void *ret)

Exit current thread
void* sthread join(sthread t t)

Wait for specified thread to exit

4/19/12

10

4/19/12

Simplethreads internals

Structure of the TCB:

struct sthread {
sthread ctx t *saved ctx;
/**
* Add your fields to the thread
* data structure here.
*/
} i

11

Sample multithreaded program

(this slide and next — see test-create.c)

vold *thread start(void *arg) {
if (arg)
printf (“in thread start, arg = %p\n”,
arg) ;

}

return 0;

4/19/12 12

Sample multithreaded program

int main(int argc, char *argv[]) {

sthread init();
for(i = 0; 1 < 3; 1i++) {

1f (sthread create(thread start,
(void *) &i) == NULL) {

printf ("sthread create failed\n");
exit (1);

}

}
// needs to be called multiple times

sthread yield() ;
printf ("back in main\n");

return 0O;

4/19/12

13

Managing contexts

(Provided for you in project 2)

Thread context = thread stack + stack
pointer

sthread new ctx(func to run)

creates a new thread context that can be switched to
sthread free ctx(some old ctx)

Deletes the supplied context
sthread switch (oldctx, newctx)

Puts current context into oldctx
Takes newctx and makes it current

4/19/12

14

How sthread switch works

Xsthread switch: Thread 1 TCB Thread 2 TCB

(push all regs) 2 - oF -

movqg %rsp, ($rax)

movqg %rdx, srsp

(pop all regs)

ret
Thread 2
registers
CPU

, rsp [0
iﬂ&“ Thread 1 running Thread 2 ready
Want to switch to thread 2... 15

4/19/12

Push old context

Xsthread switch:
(push all regs)
movqg %Srsp, (sSrax)
movqg %rdx, srsp
(pop all regs)

ret

Thread 1 TCB Thread 2 TCB

s> 5¢ [

4/19/12

Thread 2
registers

Thread 1 running Thread 2 ready

16

Save old stack pointer

Xsthread switch:
(push all regs)
movqg 5%rsp, (%rax)
movqg %rdx, srsp

(pop all regs)

Thread 1 TCB

s>

Thread 2 TCB

5¢ [

ret

CPU

> rsp]

4/19/12

Thread 1 running

Thread 2
registers

Thread 2 ready

17

Change stack pointers

Xsthread switch: Thread 1 TCB Thread 2 TCB

(push all regs) 2 - oF -

movqg %rsp, ($rax)

movq %rdx,3rsp

(pop all regs)

ret
Thread 2
registers
CPU

, rsp [
iﬂ&“ Thread 1 ready Thread 2 running
18

4/19/12

Pop off new contexi

Xsthread switch: Thread 1 TCB Thread 2 TCB

(push all regs) 2 - oF -

movqg %Srsp, (sSrax)

movqg srdx, $rsp

(pop all regs)

ret

Thread 1 ready Thread 2 running

Thread 2 regs 19

4/19/12

Done: return

Xsthread switch:
(push all regs)
movqg %rsp, ($rax)
movqg %rdx, srsp
(pop all regs)
ret

= What got switched?
= RSP
= PC (how?)
= Other registers

Thread 1 TCB

ol

Thread 2 TCB

5¢ [

Thread 2 regs

4/19/12

Thread 1 ready

Thread 2 running

20

Adjusting the PC

Thread 1 TCB Thread 2 TCB

se N SP [

= ret pops off the new
return address!

ra=0x400

ra=0x800

Thread 1 (stopped): Thread 2 (running):
sthread_switch(t1,t2); sthread_switch(t2,...);
0x400: printf("test 17); 0x800: printf(“test 2%):

4/19/12

Thread joining

With Pthreads (and Sthreads):

Master thread calls join on worker thread
Join blocks until worker thread exits.

Join returns the return value of the worker
thread.

1@:::; pthread create()) ——————® pthread join()| —m

Worker [
Thread
DOWORK ——®» pthread exit() |

Worker
Thread

22

The need for synchronization

Thread safety:

An application's ability to execute multiple
threads simultaneously without "clobbering"
shared data or creating "race" conditions

g

Main Program o / ;;;:-dify{memlnt: 0x4450A)
—_/_modify(memloc 0x4450A
. modify(

—— _,,?
Thread 1 w @ 7 modify(memloc 0x4450.
I
call subA call subA call subA” Global Memory
memloc 0x

memioc 0x4450A

4/19/12 23

Synchronization primitives:
mutexes

sthread mutex t sthread mutex 1nit ()
vold sthread mutex free (sthread mutex t lock)

vold sthread mutex lock(sthread mutex t lock)

When returns, thread is guaranteed to acquire lock

void sthread mutex unlock(
sthread mutex t lock)

4/19/12 24

Synchronization primitives:
condition variables

sthread cond t sthread cond 1init ()
vold sthread cond free(sthread cond t cond)

vold sthread cond signal (sthread cond t cond)

Wake-up one waiting thread, if any
void sthread cond broadcast (
sthread cond t cond)

Wake-up all waiting threads, if any
vold sthread cond wait (sthread cond t cond,

sthread mutex t lock)
Wait for given condition variable
Returning thread is guaranteed to hold the lock

4/19/12 25

4/19/12

Things to think about

How do you create a thread?

How do you pass arguments to the thread’s start
function?

Function pointer passed to sthread new_ctx() doesn’t
take any arguments

How do you deal with the initial (main)
thread?

How do you block a thread?

26

4/19/12

Things to think about

When and how do you reclaim resources for
a terminated thread?

Can a thread free its stack itself?
Where does sthread switch return?
Who and when should call sthread switch?

What should be in struct _sthread mutex,
struct sthread cond?

27

4/19/12

Things to think about

Working with synchronization: When does it
make sense to disable interrupts?

Which actions are atomic at the application level
versus at the thread level?

When using forkbomb, run “ulimit -Su 64” to
limit the number of processes/threads

Allows you to log in from another session even if
you hit the above limit

Add it to your .bash_profile so it happens
automatically

28

