CSE 451: Operating Systems

Section 3:
Project O recap, Project 1

Project 0

4/12/2012

Project 0: queue problems

* Must check for empty queues before reversing
or sorting

4/12/2012

Project 0: common hash table problems

* Linear probing misunderstandings
* Must mark cells as vacated (different than free)

* Consider hash table size of 10
* Two inserts:
* keyl->hash=5
* key2 ->hash =15
% Linear probing: will occupy slots 5 and 6
* Delete keyl
* Lookup key2: slot 5 is empty, but need to check 6!

4/12/2012

4/12/12

Project 0: other hash table problems

* Not improving the test code

*x Memory leaks

4/12/2012

Coding style

* Please indent consistently
* man 1 indent

* Let your text editor do it for you!
* Vi: press 1 G, then press =G

* Add comments for complex code

4/12/2012

Memory management

* The problem of ownership:
void do_stuff (char *buf, int len) {

free (buf) ;
}

int main () {
char *mybuf =
(char *)malloc (LEN*sizeof (char));
do_stuff (mybuf, LEN);

free (mybuf) ; // Double free: undefined
// behavior!

4/12/2012

Memory management

* Always be explicit about who owns memory

* If a function allocates some memory that the caller
must free, say so!

* If a function frees some memory that the caller
should no longer use, say so!

* Define pairs of allocate and free functions

x |deally, whoever calls the allocate function also calls
the free function; if not, carefully consider usage

4/12/2012

4/12/12

Advanced memory management

* What if multiple processes or threads are
accessing the same structure in memory?
* When can we free?

* What technique can we use to track who is using
the memory?
* Reference counting

4/12/2012

Kernel memory management

* How does memory management within the
kernel differ?
* Different pools of memory
* e.g. for devices that use DMA

* Different priority / reliability requirements
* Can the kernel block/sleep when allocating memory?

* Different performance requirements
*x Frequent allocations use “slab allocator” [Bonwick '94]

* Kernel memory allocation functions:
kmalloc (), vmalloc ()

4/12/2012 10

Project 1

* Due Wednesday at 11:59pm!

* Follow turnin instructions carefully
* Only one group member needs to run turnin

* The writeup is a critical component

* Don’t forget to include your group number and
everybody’s name in the writeup

4/12/2012

Project 1: turnin

* Preserve directories when submitting changed
files
* When we extract your changed files, they should go
to the right directory, so it is unambiguous which
file you changed

% This is easy to do with the tar command

* Recommendation: double-check your turnin on a clean
copy of the kernel

* Writeup requires a list of modified files (#7):
please use full path name

4/12/2012 12

4/12/12

Developing ON forkbomb.cs.washington.edu

* What’s a forkbomb?

* How do you stop a forkbomb?
x If you're still logged in, try killall

* If you can’t log in, e-mail support@cs!
* The TAs can’t do anything about it

4/12/2012 13

Project 1: system calls

* Special functions must be used to copy data
between user space and kernel. Why?

Every user process maps
the same kernel segment
into its address space. This

Linux kernel memory safety

* copy_from user (), copy_to_user(),
access_ ok () :look for example usage in

kernel
* Definition, gory details: arch/x86/lib/usercopy_32.c

4/12/2012 15

OxFFFFFFFF segment includes a small stack
kemel / for executing kernel code, as
segment well as kernel data structures,
0xC0000000 and mappings to directly access
OxBFFFFFFF physical memory.
user
Each user process has its
Segmem .a OWN, private user segment.
This segment includes the
process's code, data, heap,
0x00000000 and stack.
4/12/2012 14
L] (]
Libraries

* Linux has two types of executable programs:
* Statically linked
* Dynamically linked

* What are the benefits of each?

% Are these library calls or system calls?
*x execve ()
x fork ()

*x strlen ()

* exec ()

* execvp ()
What kind of executable are you creating for project 1?

4/12/2012

4/12/12

Project 1: example Makefile

all: standalone linked

Produces getexeccounts.o:
g
getexeccounts: getexeccounts.c getexeccounts.h
gcc -c getexeccounts.c

Produces getcounts.a:
library: getexeccounts
ar r getcounts.a getexeccounts.o

standalone: getexeccounts
gcc -o getdriver standalone getdriver.c \
getexeccounts.o

linked: getexeccounts library
gcc -o getdriver linked getdriver.c getcounts.a

clean:
rm -f *.0 *.a getdriver standalone \
getdriver linked
- 4/12/2012 17

Useful commands for libraries & syscalls

* strace: trace system calls

* Itrace: trace library calls

* Idd: list shared libraries program depends on
* objdump: display info from object files

* readelf: display info from executable files

* strings: print strings found in a binary file

4/12/2012 18

Project 1: debugging

* How will you debug project 1?

* Recommendation: implement and test one
basic step at a time

* Debug messages: printk ()

* Where does printk () output go?

* Possibly to console (include/linux/kernel.h: defines
KERN_XYZ log levels)

* dmesg command
* /var/log/messages

4/12/2012 19

Project 1: testing

* How will you test project 1?

* Check execcounts correctness by
comparing its output to output from other
tools

* Test bad input: to shell, to system call

* Shell must be able to read commands from a
file: use this for testing!

* What else?

4/12/2012 20

4/12/12

Project 1 tips

* Re-read the project description for hints
* Read the man pages!
* Navigating Linux kernel code: ctags, cscope

* Use the discussion board

4/12/2012 21

4/12/2012

22

4/12/12

