CSE 451: Operating Systems

Section 2

Interrupts, Syscalls, Virtual Machines, and
Project 1

Interrupts

Interrupt
Hardware or software
Hardware interrupts caused by devices signaling CPU
Software interrupts caused by code
Exception
Unintentional software interrupt
E.g. errors, divide-by-zero, general protection fault
Trap
Intentional software interrupt
Controlled method of entering kernel mode

System calls

4/5/2012

Interrupts (continued)

Execution halted
CPU switched from user mode to kernel mode
State saved
Registers, stack pointer, PC
Look up interrupt handler in table

Run handler

Handler is (mostly) just a function pointer
Restore state
CPU switched from kernel mode to user mode

Resume execution

4/5/2012

Interrupts (continued)

- What happens if there is another interrupt
during the handler?

. The kernel disables interrupts before entering a
handler routine

- What happens if an interrupt fires while they
are disabled?

. The kernel queues interrupts for later processing

4/5/2012

System calls

.- Provide userspace applications with controlled
access to OS services

. Requires special hardware support on the CPU
to detect a certain system call instruction and
trap to the kernel

4/5/2012

System call control flow

User application calls a user-level library routine
(gettimeofday (), read (), exec (), etc.)

Invokes system call through stub, which specifies the

system call number. From unistd.h:

#define NR getpid 172
__ SYSCALL(_ NR getpid, sys getpid)

This generally causes an interrupt, trapping to kernel

Kernel looks up system call number in syscall table,
calls appropriate function

Function executes and returns to interrupt handler,
which returns the result to the userspace process

4/5/2012

System call conirol flow (continued)

User-space

Kernel-space

(User a[I:-pIicatiﬂn:] (C-Library j (Kernel] [E-ystelm call)

getpid(void) Load fargurhents
' —> sax= |NR_getpid,
transition o kerel (int 80)

system_call

call
system_call_tablefeax]

{ Jpicheb sAs

: return
syscall exit |-

resumg Usefspace

&

Retum

f !

Specifics have changed since this diagram was
made, but idea is still the same

4/5/2012

How Linux does system calls

. The syscall handler is generally defined in
arch/x86/kernel/entry [32]64].S

In the Ubuntu kernel | am running (2.6.38),

entry 64.S contains ENTRY (system call), which is
where the syscall logic starts

. There used to be “int” and “iret” instructions, but
those have been replaced by “sysenter” and
“sysexit”, which provide similar functionality.

4/5/2012

Syscalls in a virtual machine

For software VMMs (e.g. VMWare Player, VirtualBox,
Microsoft Virtual PC), there are a couple options:

Install hardware interrupt handler for each VM (requires
CPU support, such as with Core 2 Duo and up)

Use dynamic rewriting to avoid hardware trap entirely

For paravirtualized VMMs (e.g. Xen) parts of the OS
are actually rewritten to avoid hardware traps

For hardware VMMs a.k.a embedded hypervisors (e.g.
VMWare ESX), sandboxing requirements are smaller, as
the only user-mode entities are VMs

Is one approach “best”?

4/5/2012

Project 1

. Three parts of varying difficulty:
. Write a simple shell in C

- Add a new system call and track state in kernel
structures to make it work

- Write a library through which the system call can be
invoked

Due: April 18 at 11:59 PM.

- Turn in code plus a writeup related to what you
learned/should have learned

4/5/2012

10

The CSE451 shell

Print out prompt
Accept input
Parse input

If built-in command
Do it directly

Else spawn new process

Launch specified program
Wait for it to finish

Repeat

4/5/2012

CSE451Shell% /bin/date

Sat Mar 31 21:58:55 PDT 2012
CSE451Shell% pwd

/root

CSE451Shell% cd /
CSE451Shell$ pwd

/

CSE451Shell% exit

11

CSEA451 shell hints

In your shell:

. Use fork to create a child process

. Use execvp to execute a specified program

. Use wait to wait until child process terminates
Useful library functions (see man pages):

. Strings: strcmp, strncpy, strtok, atoi

. 1/O: fgets

. Error report: perror

. Environment variables: getenv

4/5/2012

12

CSE451 shell hints (continued)

. Advice from a previous TA:

. Try running a few commands in your completed
shell and then type exit. If it doesn’t exit the first
time, you're doing something wrong.

. echo $? prints the exit code, so you can check
your exit code against what is expected.

. Check the return values of all library/system calls.
They might not be working as you expect

. Don’t split the project along the three parts among
group members. Each one should contribute some
work to each part or you won’t end up understanding
the big picture.

4/5/2012 13

Adding a system call

. Add execcounts system call to Linux:
. Purpose: collect statistics

. Count number of times you call fork, vfork, clone,
and exec system calls.

. Steps:
. Modify kernel to keep track of this information
. Add execcounts to return the counts to the user

. Use execcounts in your shell to get this data from
kernel and print it out.

. Simple, right? ;)

4/5/2012 14

Programming in kernel mode

. Your shell will operate in user mode

. Your system call code will be in the Linux
kernel, which operates in kernel mode

. Be careful - different programming rules,
conventions, etc.

4/5/2012

15

Userspace vs. kernel mode conventions

. Can’t use application libraries (e.g. libc)
. E.g. can’t use printf

. Use only functions defined by the kernel
. E.g. use printk instead

. Include files are different in the kernel

. Don’t forget you’re in kernel space
. You cannot trust user space

. For example, you should validate user buffers (look
in kernel source for what other syscalls, e.g.
gettimeofday() do)

4/5/2012

16

Kernel development hints

Use grep as a starting point to find code
For example:
find . —name *.c | xargs grep —-n gettimeofday

. This will search all c files below your current directory for
gettimeofday and print out the line numbers where it occurs

Pete has an awesome tutorial on the website about
using ctags and cscope to cross-reference variable,
struct, and function definitions:

4/5/2012

17

http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html

Kernel development hints (continued)

Use git to collaborate with your project partners

Pete has a guide to getting git set up for use with project 1
on the website:

Overview of use:

Create a shared repository in /projects/instr/12sp/cse451/X, where
X is your group’s letter

Check the project’s kernel source into the repository

Have each group member check out the kernel source, make
modifications to it as necessary, and check in their changes

See the web page for more information

4/5/2012 18

http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html

Project 1 development

. Option 1: Use VMWare on a Windows lab machine
. Can use forkbomb for kernel compilation (fast)
...or use the VM itself for kernel compilation (slow)

. The VM files are not preserved once you log out of the
Windows machine, so copy your work to attu, your shared
repository, or some other “safe” place

. Option 2: Use your own machine
. Can use VMWare, VirtualBox, or your VMM of choice

. See the “VM information” page on the website for getting
this set up

4/5/2012 19

http://www.cs.washington.edu/education/courses/cse451/12sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/12sp/vminfo.html

Project 1 development (continued)

. If you build the kernel on forkbomb, copy the
resulting bzlmage file to your VM and overwrite
/boot/vmlinuz-2.6.38.2-CSE451

. If you build the kernel inside the VM, run sudo make
install from inside the kernel directory to install it

. Reboot with shutdown -r now

. If your kernel fails to boot, pick a different kernel from
the menu to get back into the VM

. While inside the running VM, use the dmesg
command to print out the kernel log (your printks will

show up here—use grep to find the ones you care
about)

4/5/2012 20

