
CSE 451: Operating Systems

Section 2
Interrupts, Syscalls, Virtual Machines, and

Project 1

Interrupts

• Interrupt

• Hardware or software

• Hardware interrupts caused by devices signaling CPU

• Software interrupts caused by code

• Exception

• Unintentional software interrupt

• E.g. errors, divide-by-zero, general protection fault

• Trap

• Intentional software interrupt

• Controlled method of entering kernel mode

• System calls

4/5/2012 2

Interrupts (continued)

• Execution halted

• CPU switched from user mode to kernel mode

• State saved

• Registers, stack pointer, PC

• Look up interrupt handler in table

• Run handler

• Handler is (mostly) just a function pointer

• Restore state

• CPU switched from kernel mode to user mode

• Resume execution

3 4/5/2012

Interrupts (continued)

• What happens if there is another interrupt
during the handler?

• The kernel disables interrupts before entering a
handler routine

• What happens if an interrupt fires while they
are disabled?

• The kernel queues interrupts for later processing

4 4/5/2012

System calls

• Provide userspace applications with controlled
access to OS services

• Requires special hardware support on the CPU
to detect a certain system call instruction and
trap to the kernel

5 4/5/2012

System call control flow

• User application calls a user-level library routine
(gettimeofday(), read(), exec(), etc.)

• Invokes system call through stub, which specifies the

system call number. From unistd.h:
#define __NR_getpid 172

__SYSCALL(__NR_getpid, sys_getpid)

• This generally causes an interrupt, trapping to kernel

• Kernel looks up system call number in syscall table,
calls appropriate function

• Function executes and returns to interrupt handler,
which returns the result to the userspace process

 6 4/5/2012

System call control flow (continued)

7 4/5/2012

• Specifics have changed since this diagram was
made, but idea is still the same

How Linux does system calls

• The syscall handler is generally defined in
arch/x86/kernel/entry_[32|64].S

• In the Ubuntu kernel I am running (2.6.38),

entry_64.S contains ENTRY(system_call), which is
where the syscall logic starts

• There used to be “int” and “iret” instructions, but
those have been replaced by “sysenter” and
“sysexit”, which provide similar functionality.

8 4/5/2012

Syscalls in a virtual machine

• For software VMMs (e.g. VMWare Player, VirtualBox,
Microsoft Virtual PC), there are a couple options:

• Install hardware interrupt handler for each VM (requires
CPU support, such as with Core 2 Duo and up)

• Use dynamic rewriting to avoid hardware trap entirely

• For paravirtualized VMMs (e.g. Xen) parts of the OS
are actually rewritten to avoid hardware traps

• For hardware VMMs a.k.a embedded hypervisors (e.g.
VMWare ESX), sandboxing requirements are smaller, as
the only user-mode entities are VMs

• Is one approach “best”?

9 4/5/2012

Project 1

• Three parts of varying difficulty:

• Write a simple shell in C

• Add a new system call and track state in kernel
structures to make it work

• Write a library through which the system call can be
invoked

• Due: April 18 at 11:59 PM.

• Turn in code plus a writeup related to what you
learned/should have learned

10 4/5/2012

The CSE451 shell

• Print out prompt

• Accept input

• Parse input

• If built-in command

• Do it directly

• Else spawn new process

• Launch specified program

• Wait for it to finish

• Repeat

11 4/5/2012

CSE451Shell% /bin/date

Sat Mar 31 21:58:55 PDT 2012

CSE451Shell% pwd

/root

CSE451Shell% cd /

CSE451Shell% pwd

/

CSE451Shell% exit

CSE451 shell hints

• In your shell:
• Use fork to create a child process

• Use execvp to execute a specified program

• Use wait to wait until child process terminates

• Useful library functions (see man pages):
• Strings: strcmp, strncpy, strtok, atoi

• I/O: fgets

• Error report: perror

• Environment variables: getenv

12 4/5/2012

CSE451 shell hints (continued)

• Advice from a previous TA:
• Try running a few commands in your completed
shell and then type exit. If it doesn’t exit the first
time, you’re doing something wrong.

• echo $? prints the exit code, so you can check
your exit code against what is expected.

• Check the return values of all library/system calls.
They might not be working as you expect

• Don’t split the project along the three parts among
group members. Each one should contribute some
work to each part or you won’t end up understanding
the big picture.

13 4/5/2012

Adding a system call

• Add execcounts system call to Linux:
• Purpose: collect statistics

• Count number of times you call fork, vfork, clone,
and exec system calls.

• Steps:
• Modify kernel to keep track of this information

• Add execcounts to return the counts to the user

• Use execcounts in your shell to get this data from
kernel and print it out.

• Simple, right? ;)

14 4/5/2012

Programming in kernel mode

• Your shell will operate in user mode

• Your system call code will be in the Linux
kernel, which operates in kernel mode

• Be careful - different programming rules,
conventions, etc.

15 4/5/2012

Userspace vs. kernel mode conventions

• Can’t use application libraries (e.g. libc)
• E.g. can’t use printf

• Use only functions defined by the kernel
• E.g. use printk instead

• Include files are different in the kernel

• Don’t forget you’re in kernel space
• You cannot trust user space

• For example, you should validate user buffers (look
in kernel source for what other syscalls, e.g.
gettimeofday() do)

16 4/5/2012

Kernel development hints

• Use grep as a starting point to find code
• For example:
• find . –name *.c | xargs grep –n gettimeofday

• This will search all c files below your current directory for
gettimeofday and print out the line numbers where it occurs

• Pete has an awesome tutorial on the website about
using ctags and cscope to cross-reference variable,
struct, and function definitions:

• http://www.cs.washington.edu/education/courses/cse451/
12sp/tutorials/tutorial_ctags.html

17 4/5/2012

http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_ctags.html

Kernel development hints (continued)

• Use git to collaborate with your project partners
• Pete has a guide to getting git set up for use with project 1
on the website:

• http://www.cs.washington.edu/education/courses/cse451/
12sp/tutorials/tutorial_git.html

• Overview of use:
• Create a shared repository in /projects/instr/12sp/cse451/X, where
X is your group’s letter

• Check the project’s kernel source into the repository

• Have each group member check out the kernel source, make
modifications to it as necessary, and check in their changes

• See the web page for more information

18 4/5/2012

http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html
http://www.cs.washington.edu/education/courses/cse451/12sp/tutorials/tutorial_git.html

Project 1 development

• Option 1: Use VMWare on a Windows lab machine
• Can use forkbomb for kernel compilation (fast)

• …or use the VM itself for kernel compilation (slow)

• The VM files are not preserved once you log out of the
Windows machine, so copy your work to attu, your shared
repository, or some other “safe” place

• Option 2: Use your own machine
• Can use VMWare, VirtualBox, or your VMM of choice

• See the “VM information” page on the website for getting
this set up

• http://www.cs.washington.edu/education/courses/cse451/
12sp/vminfo.html

19 4/5/2012

http://www.cs.washington.edu/education/courses/cse451/12sp/vminfo.html
http://www.cs.washington.edu/education/courses/cse451/12sp/vminfo.html

Project 1 development (continued)

• If you build the kernel on forkbomb, copy the
resulting bzImage file to your VM and overwrite
/boot/vmlinuz-2.6.38.2-CSE451

• If you build the kernel inside the VM, run sudo make
install from inside the kernel directory to install it

• Reboot with shutdown –r now

• If your kernel fails to boot, pick a different kernel from
the menu to get back into the VM

• While inside the running VM, use the dmesg
command to print out the kernel log (your printks will
show up here—use grep to find the ones you care
about)

20 4/5/2012

