CSE 451: Operating Systems

Section 1

Who cares about operating systems?

* Operating systems techniques apply to all
other areas of computer science
* Data structures
* Caching
*x Concurrency
* Virtualization

* Operating systems support all other areas of
computer science

3/29/2012

Why are you here?

* Because you-wantto-workforMicrosoftand
hack-onthe Windowskernel?

* Because it fulfills a requirement and fits your
schedule?

3/29/2012 2

Photos @ Facebook

April 2009 Current
15 billion photos 65 billion photos
Total 60 billion images 260 billion images
1.5 petabytes 20 petabytes
220 million photos / week 1 billion photos / week
Wieltezel iz 25 terabytes 60 terabytes
Serving Rate 550,000 images / sec 1 million images / sec

3/29/12

3/29/12

NFS based Design

Haystack Store
H?ysmck
= Typical website Directory
- Small working set [

- Infrequent access of old content
- ~99% CDN hit rate

Haystack
Cache

:] J«
4 N
Browser

= Facebook
- Large working set
- Frequent access of old content
- 80% CDN hit rate

Who are we? What is this section for?
* Pete Hornyack * Projects
* Elliott Brossard * Questions!

* Extensions beyond lecture / textbook material

* What do we know?

* Why are we here?

3/29/2012 7 3/29/2012 8

Office hours

* Monday 12:30 — 1:20 (Ed)

* Tuesday 12:30 — 1:20 (Elliott)

* Wednesday 10:30 — 11:20 (Pete)
* Wednesday 1:30 — 2:20 (Elliott)
* Friday 3:30 — 4:20 (Pete)

3/29/2012

Use the discussion board!

* If you remember anything from this section,
remember this!

* The TAs get an e-mail notification every time
somebody posts

* Your classmates may have quicker / better answers
than we do

3/29/2012

Collaboration

% If you talk or collaborate with anybody, or
access any websites for help, name them when
you submit your project

* Review the CSE policy on collaboration:

* http://www.cs.washington.edu/education/courses/
cse451/12sp/overview.html#Policies

3/29/2012

Outline

* atreduction
* C language “features”
* C pitfalls

* Project O

3/29/2012

3/29/12

Why C?

* Why not write OS in Java?

* Interpreted Java code runs in a virtual machine;
what does the VM run on?

% Precision
* Instructions
*x Timing
* Memory

* What about Android?

3/29/2012 13

C Ianguage features

* Pointers

* Pass-by-value vs. pass-by-reference
* Structures

* Typedefs

* Explicit memory management

3/29/2012 14

Pointers

int x = 5;

int y = 6;

int* px = &x; // declares a pointer to x
// with value as the
// address of x

*px = y; // changes value of x to y
// (x == 6)

px = &y; // changes px to point to

// y's memory location

3/29/2012 15

Pointer tutorials

% Pointer Fun C
* http://www.youtube.com/watch?v=mnXkiAKbUPg

* UW ACM tutorial: A C++ Crash Course
* Review slides 23-29:

* http://flatline.cs.washington.edu/orgs/acm/tutorials/
intro-c++/c++-tutorial-pt1.ppt

* More tutorials linked from project page

* http://www.cs.washington.edu/education/courses/
cse451/12sp/projects.html

3/29/2012 16

3/29/12

Function pointers

Arrays and pointer arithmetic

int some_ fn(int x, char c) { ... }
// declares and defines a function
int (pt_fn) (int, char) = NULL;
// declares a pointer to a function
// that takes an int and a char as
// arguments and returns an int
pt _fn = some fn;
// assigns pointer to some fn()’s
// location in memory
int a = pt _fn (7, ‘p’);
// sets a to the value returned by
// some fn(7, ‘p’)

3/29/2012 17

* Array variables can often be treated like
pointers, and vice-versa:

int fool[2]; // foo acts like a pointer to
// the beginning of the array
* (foo+l) = 5; // the second int in the

// array is set to 5

* Don’t use pointer arithmetic unless you have a
good reason to

3/29/2012

Pass-by-value vs. pass-by-reference

Pass-by-reference for returning values

int doSomething(int x) {
return x+1;

}

void doSomethingElse (int* x) {
*x += 1;
}

void foo () {
int x = 5;
int y = doSomething(x); // x==5, y==6
doSomethingElse (&x) ; // x==6, y==6

3/29/2012 19

bool queue remove (
queue* g, queue element** elem ptr)

{

queue element* elem = ...;

*elem ptr = elem;
return true;

3/29/2012

20

3/29/12

Structures

struct foo_s { // Defines a type that
int x; // is referred to as a
int y; // “struct foo s”.

}s // Don’t forget this ;

struct foo_s foo; // Declares a struct

// on the stack
foo.x = 1; // Sets the x field

// of the struct to 1

3/29/2012 21

Typedefs

typedef struct foo s foo;
// Creates an alias “foo” for
// “struct foo_ s”

foo* new foo =
(foo*)malloc (sizeof (foo));
// Allocates a foo_ s struct on the
// heap; new foo points to it

new foo->x = 2;
// “=>" operator dereferences the
// pointer and accesses the field x;
// equivalent to (*new foo).x = 2;

3/29/2012 22

Explicit memory management

* Allocate memory on the heap:
void *malloc(size_t size);

* Note: may fail!
* Use sizeof () operator to get size

* Free memory on the heap:
void free(void *ptr);

* Pointer argument comes from previous malloc ()
call

3/29/2012 23

Common C pitfalls

3/29/2012 24

3/29/12

Common C pitfalls (1)

Common C pitfalls (1)

* What’s wrong and how can it be fixed?

char* city name(float lat, float long) {
char name[100];

return name;

3/29/2012 25

* Problem: returning pointer to local (stack)
memory

* Solution: allocate on heap

char* city name (float lat, float long) {
char* name = (char*)malloc (100);

return name;

3/29/2012 26

Common C pitfalls (2)

Common C pitfalls (2)

* What’s wrong and how can it be fixed?

char* buf = (char*)malloc(32);
strcpy (buf, argv([1l]);

3/29/2012 27

* Problem: potential buffer overflow
* Solution:
#define BUF SIZE 32

char* buf = (char*)malloc (BUF_SIZE);
strncpy (buf, argv([1l], BUF SIZE);

* Why are buffer overflow bugs dangerous?

3/29/2012 28

3/29/12

Common C pitfalls (3)

Common C pitfalls (3)

* What’s wrong and how can it be fixed?

char* buf = (char*)malloc(32);
strncpy (buf, “hello”, 32);
printf (“%s\n”, buf);

buf = (char*)malloc(64);
strncpy (buf, “bye”, 64);
printf (“$s\n”, buf);

free (buf) ;

3/29/2012 29

* Problem: memory leak

* Solution:

char* buf = (char*)malloc(32);
strncpy (buf, “hello”, 32);
printf (“%s\n”, buf);

free (buf);

buf = (char*)malloc(64);

3/29/2012

30

Common C pitfalls (4)

Common C pitfalls (4)

* What’s wrong (besides ugliness) and how can it
be fixed?

char foo[2];

foo[0] = ‘H';

fool[l] = ‘i’;

printf (“%s\n”, foo);

3/29/2012 31

* Problem: string is not NULL-terminated

* Solution:

char fool[3];

foo[0] = ‘H’;

foo[l] = ‘i’;

foo[2] = “\0';

printf (“$s\n”, &foo);

% Easier way: char* foo = “Hi”;

3/29/2012

32

3/29/12

Common C pitfalls (5)

* What’s the bug in the previous examples?
* Not checking return value of system calls / library

calls!
char* buf = (char*)malloc (BUF_SIZE);
if (!buf) {
printf (“error!\n”);
exit (1) ;

}
strncpy (buf, argv([1l], BUF_SIZE);

3/29/2012 33

Project 0

* Description is on course web page now
* Due Wednesday April 4, 11:59pm

* Work individually

* Remaining projects are in groups of 3: e-mail your
groups to us by 11:00am on Monday

3/29/2012 34

Project 0: goals

* Get re-acquainted with C programming

* Practice working in C / Linux development
environment

* Create data structures for use in later projects

3/29/2012 35

Project 0: tools

* Editing
* Choose your favorite: emacs, vi, Eclipse...
* Refer to man pages for system and library calls

* Navigation

* ctags

* http://www.cs.washington.edu/education/courses/
cse451/12sp/tutorials/tutorial _ctags.html

* cscope

3/29/2012 36

3/29/12

Project 0: tools

* Compiling
* gcc and Makefiles

* Debugging
* valgrind
* gdb

* http://www.cs.washington.edu/education/courses/
cse451/12sp/projects.html

3/29/2012 37

valgrind

* Helps find all sorts of memory problems

* Lost pointers (memory leaks), invalid references,
double frees

* Simple to run:
* valgrind ./myprogram

* Look for “definitely lost,” “indirectly lost” and
“possibly lost” in the LEAK SUMMARY

* Manual:
* http://valgrind.org/docs/manual/manual.html

3/29/2012 38

Project 0: memory leaks

Before you can check the queue for memory leaks, you
should add a queue destroy function:
void queue destroy(queue* g) {
queue_ link* cur;
queue link* next;
if (q) |
cur = g->head;
while (cur) {

next = cur->next;
free (cur);
cur = next;

}

free(q);

} 3/20/2012 39

Project 0: testing

* The test files in the skeleton code are
incomplete

* Make sure to test every function in the interface
(the .h file)

* Make sure to test corner cases

* Suggestion: write your test cases first

3/29/2012 40

3/29/12

10

Project 0: tips

* Part 1: queue
% First step: improve the test file
* Then, use valgrind and gdb to find the bugs

* Part 2: hash table
* Write a thorough test file
* Perform memory management carefully

* You'll lose points for:
* Leaking memory
* Not following submission instructions

3/29/2012 41

Remember:

Use the discussion board!

3/29/2012

42

3/29/12

11

