
1

CSE 451: Operating Systems

Spring 2012

Module 9

Deadlock

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

© 2012 Gribble, Lazowska, Levy, Zahorjan 2

© 2012 Gribble, Lazowska, Levy, Zahorjan 3

Definition

• A thread is deadlocked when it’s waiting for an event
that can never occur
– I’m waiting for you to clear the intersection, so I can proceed

• but you can’t move until he moves, and he can’t move until she
moves, and she can’t move until I move

– Thread A is in critical section 1, waiting for access to critical
section 2; thread B is in critical section 2, waiting for access
to critical section 1

– I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-trips. It’s
all-or-nothing – one high-level transaction – with the four
databases locked in that order. You’re trying to do the same
thing in the opposite order.

© 2012 Gribble, Lazowska, Levy, Zahorjan 4

Four conditions must exist
for deadlock to be possible

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

We’ll see that deadlocks can be addressed by
attacking any of these four conditions.

© 2012 Gribble, Lazowska, Levy, Zahorjan 5

Resource Graphs

• Resource graphs are a way to visualize the
(deadlock-related) state of the threads, and to
reason about deadlock

T1 T2 T3

Resources

Threads

• 1 or more identical units of a resource are available
• A thread may hold resources (arrows to threads)
• A thread may request resources (arrows from threads)

T4

© 2012 Gribble, Lazowska, Levy, Zahorjan 6

Deadlock

• A deadlock exists if there is an irreducible cycle in the
resource graph (such as the one above)

2

© 2012 Gribble, Lazowska, Levy, Zahorjan 7

Graph reduction

• A graph can be reduced by a thread if all of that
thread’s requests can be granted
– in this case, the thread eventually will terminate – all

resources are freed – all arcs (allocations) to/from it in the
graph are deleted

• Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is completely

reducible

– The order of reductions is irrelevant

© 2012 Gribble, Lazowska, Levy, Zahorjan 8

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne 2002

What would cause a
deadlock?

© 2012 Gribble, Lazowska, Levy, Zahorjan 9

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne 2002 © 2012 Gribble, Lazowska, Levy, Zahorjan 10

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne 2002

© 2012 Gribble, Lazowska, Levy, Zahorjan 11

Handling Deadlock

• Eliminate one of the four required conditions
– Mutual Exclusion

• Clearly we’re not going to eliminate this one!

– Hold and Wait

– No Preemption

– Circular Wait

• Broadly classified as:
– Prevention, or

– Avoidance, or

– Detection (and recovery)

© 2012 Gribble, Lazowska, Levy, Zahorjan 12

Prevention

Applications must conform to behaviors guaranteed not
to deadlock

• Eliminating hold and wait
• each thread obtains all resources at the beginning

• blocks until all are available
• drawback?

• Eliminating circular wait
• resources are numbered

• each thread obtains resources in sequence order (which
could require acquiring some before they are actually
needed)
• why does this work?

• pros and cons?

3

© 2012 Gribble, Lazowska, Levy, Zahorjan 13

Avoidance

Less severe restrictions on program behavior

• Eliminating circular wait
– each thread states its maximum claim for every resource

type

– system runs the Banker’s Algorithm at each allocation
request
• Banker  incredibly conservative

• if I were to allocate you that resource, and then everyone were
to request their maximum claim for every resource, could I find
a way to allocate remaining resources so that everyone
finished?

– More on this in a moment…

© 2012 Gribble, Lazowska, Levy, Zahorjan 14

• Every once in a while, check to see if there’s a
deadlock
– how?

• If so, eliminate it
– how?

Detect and recover

© 2012 Gribble, Lazowska, Levy, Zahorjan 15

Avoidance: Banker’s Algorithm example

• Background
– The set of controlled resources is known to the system

– The number of units of each resource is known to the
system

– Each application must declare its maximum possible
requirement of each resource type

• Then, the system can do the following:
– When a request is made

• pretend you granted it

• pretend all other legal requests were made

• can the graph be reduced?
– if so, allocate the requested resource

– if not, block the thread until some thread releases resources, and
then try pretending again

© 2012 Gribble, Lazowska, Levy, Zahorjan 16

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

1. I request a pot

© 2012 Gribble, Lazowska, Levy, Zahorjan 17

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

© 2012 Gribble, Lazowska, Levy, Zahorjan 18

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

2. You request a pot

4

© 2012 Gribble, Lazowska, Levy, Zahorjan 19

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

© 2012 Gribble, Lazowska, Levy, Zahorjan 20

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3a. You request a pan

© 2012 Gribble, Lazowska, Levy, Zahorjan 21

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? NO! Both of
us might be unable to
complete!

pretend

© 2012 Gribble, Lazowska, Levy, Zahorjan 22

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

3b. I request a pan

© 2012 Gribble, Lazowska, Levy, Zahorjan 23

Pots

Pans

Me You

Max:
1 pot
2 pans

Max:
2 pots
1 pan

Suppose we allocate, and
then everyone requests
their max? It’s OK; there is
a way for me to complete,
and then you can complete

pretend

© 2012 Gribble, Lazowska, Levy, Zahorjan 24

Current practice

• Microsoft SQL Server
– “The SQL Server Database Engine automatically detects

deadlock cycles within SQL Server. The Database Engine
chooses one of the sessions as a deadlock victim and the
current transaction is terminated with an error to break the
deadlock.”

• Oracle
– As Microsoft SQL Server, plus “Multitable deadlocks can

usually be avoided if transactions accessing the same tables
lock those tables in the same order... For example, all
application developers might follow the rule that when both a
master and detail table are updated, the master table is
locked first and then the detail table.”

5

© 2012 Gribble, Lazowska, Levy, Zahorjan 25

• Windows internals (Linux no different)
– “Unless they did a huge change in Vista (and from what I've

heard they haven't modified this area), the NT kernel
architecture is a deadlock minefield. With the multi-threaded
re-entrant kernel there is plenty of deadlock potential.”

– “Lock ordering is great in theory, and NT was originally
designed with mutex levels, but they had to be abandoned.
Inside the NT kernel there is a lot of interaction between
memory management, the cache manager, and the file
systems, and plenty of situations where memory
management (maybe under the guise of its modified page
writer) acquires its lock and then calls the cache manager.
This happens while the file system calls the cache manager
to fill the cache which in turn goes through the memory
manager to fault in its page. And the list goes on.”

© 2012 Gribble, Lazowska, Levy, Zahorjan 26

Summary

• Deadlock is bad!

• We can deal with it either statically (prevention) or
dynamically (avoidance and/or detection)

• In practice, you’ll encounter lock ordering, periodic
deadlock detection/correction, and minefields

