
1

CSE 451: Operating Systems

Spring 2012

Module 24

Distributed Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

© 2012 Gribble, Lazowska, Levy, Zahorjan 2

What is a “distributed system”?

• Nearly all systems today are distributed in some way
– they use email

– they access files over a network

– they access printers over a network

– they’re backed up over a network

– they share other physical or logical resources

– they cooperate with other people on other machines

– they access the web

– they receive video, audio, etc.

© 2012 Gribble, Lazowska, Levy, Zahorjan 3

Loosely-coupled systems

• Earliest systems used simple explicit network 
programs
– FTP (rcp): file transfer program

– telnet (rlogin/rsh): remote login program

– mail (SMTP)

• Each system was a completely autonomous 
independent system, connected to others on the 
network

© 2012 Gribble, Lazowska, Levy, Zahorjan 4

• Even today, most distributed systems are loosely-
coupled (although not that loosely!):
– each CPU runs an independent autonomous OS

– computers don’t really trust each other

– some resources are shared, but most are not

– the system may look differently from different hosts

© 2012 Gribble, Lazowska, Levy, Zahorjan 5

Closely-coupled systems

• A distributed system becomes more “closely-coupled” 
as it
– appears more uniform in nature

– runs a “single” operating system

– has a single security domain

– shares all logical resources (e.g., files)

– shares all physical resources (CPUs, memory, disks, 
printers, etc.)

• In the limit, a distributed system looks to the user as if 
it were a centralized timesharing system, except that 
it’s constructed out of a distributed collection of 
hardware and software components

© 2012 Gribble, Lazowska, Levy, Zahorjan 6

Tightly-coupled systems

• A “tightly-coupled” system usually refers to a 
multiprocessor
– runs a single copy of the OS with a single workload queue

– has a single address space

– usually has a single bus or backplane to which all 
processors and memories are connected

– has very low communication latency

– processors communicate through shared memory



2

© 2012 Gribble, Lazowska, Levy, Zahorjan 7

Some issues in distributed systems

• Transparency (how visible is the distribution)

• Security

• Reliability

• Performance

• Scalability

• Programming models

• Communication models

© 2012 Gribble, Lazowska, Levy, Zahorjan 8

Example:  Grapevine distributed mail service

• Xerox PARC, 1980
– cf. Microsoft Outlook/Exchange today!!!!!

• Goals
– cannot rely on integrity of client

– once the system accepts mail, it will be delivered

– no single Grapevine computer failure will make the system 
unavailable to any client either for sending or for receiving 
mail

• Components
– GrapevineUser package on each client workstation

– Registration Servers

– Message Servers 

• Implementation:  Remote Procedure Call

© 2012 Gribble, Lazowska, Levy, Zahorjan 9

Grapevine: Functional diagram

© 2012 Gribble, Lazowska, Levy, Zahorjan 10

Grapevine: Sending a message

• User prepares message using mail client

• Mail client contacts GrapevineUser package on 
same workstation to actually send message

• GrapevineUser package
– Contacts any Registration Server to get a list of Message 

Servers

– Contacts any Message Server to transmit message
• presents source and destination userids, and source 

password, for authentication
– Message Server uses any Registration Server to authenticate

• sends message body to Message Server
– Message Server places it in stable storage and acknowledges 

receipt

© 2012 Gribble, Lazowska, Levy, Zahorjan 11

Grapevine: Functional diagram

1

2

3

4

© 2012 Gribble, Lazowska, Levy, Zahorjan 12

Registries

• Actually, I lied:  There’s an additional step.
– For scalability, users are partitioned into registries – “user 

‘P.Q’” is user P in registry Q.

– Registries are replicated.

– There is one registry that is replicated on every registration 
server:  the registry of registries.

– So, when I said:
Message Server uses any Registration Server to authenticate

what actually happens is the Message Server contacts any 
Registration Server to obtain a list of those Registration 
Servers holding the registry of the user, then contacts one of 
those registration servers to authenticate the user



3

© 2012 Gribble, Lazowska, Levy, Zahorjan 13

Grapevine: Transport and buffering

• For each recipient of the message, Message Server 
contacts any Registration Server to obtain list of 
Message Servers holding mail for that recipient
– Same lie as before

• Sends a copy of the message to one of those 
Message Servers for that recipient

© 2012 Gribble, Lazowska, Levy, Zahorjan 14

Grapevine: Functional diagram

1

2

3

4

5* 6*

© 2012 Gribble, Lazowska, Levy, Zahorjan 15

Grapevine: Retrieving mail

• User uses mail client to contact GrapevineUser 
package on same workstation to retrieve mail

• GrapevineUser package
– Contacts any Registration Server to get a list of each 

Message Server holding mail for the user (“inbox site”)
• Same lie as before

– Contacts each of these Message Servers to retrieve mail
• presents user credentials

– Message Server uses any Registration Server to authenticate

• acknowledges receipt of messages so that the server can 
delete them from its storage

© 2012 Gribble, Lazowska, Levy, Zahorjan 16

Grapevine: Functional diagram

1

2

3

4

5* 6*

1

2

3*

4*

© 2012 Gribble, Lazowska, Levy, Zahorjan 17

Grapevine: Scalability

• Can add more Registration Servers

• Can add more Message Servers

• Only thing that didn’t scale was handling of 
distribution lists
– the accepting Message Server was responsible for 

expanding the list (recursively if necessary) and delivering to 
an appropriate Message Server for each recipient

– some distribution lists contained essentially the entire user 
community

• Jeff Dean (Google) told us they don’t even think 
about more than two decimal orders of magnitude
– fundamental design decisions will need to change

– advances in technology will make it possible

© 2012 Gribble, Lazowska, Levy, Zahorjan 18

Example:  Google search infrastructure

• It’s likely that Google has several million machines
– But let’s be conservative – 1,000,000 machines

– A rack holds 176 CPUs (88 1U dual-processor boards), so that’s 
about 6,000 racks

– A rack requires about 50 square feet (given datacenter cooling 
capabilities), so that’s about 300,000 square feet of machine room 
space (more than 6 football fields of real estate – although of 
course Google divides its machines among dozens of datacenters 
all over the world)

– A rack requires about 10kw to power, and about the same to cool, 
so that’s about 120,000 kw of power, or nearly 100,000,000 kwh 
per month ($10 million at $0.10/kwh)

• Equivalent to about 20% of Seattle City Light’s generating capacity



4

© 2012 Gribble, Lazowska, Levy, Zahorjan 19

• There are multiple clusters (of thousands of computers 
each) all over the world

• Many hundreds of machines are involved in a single 
Google search request (remember, the web is 400+TB)

1. DNS routes your search request to a nearby cluster

© 2012 Gribble, Lazowska, Levy, Zahorjan 20

• A cluster consists of Google Web Servers, Index Servers, 
Doc Servers, and various other servers (ads, spell 
checking, etc.)
– These are cheap standalone computers, rack-mounted, connected 

by commodity networking gear

© 2012 Gribble, Lazowska, Levy, Zahorjan 21

2. Within the cluster, load-balancing routes your search 
to a lightly-loaded Google Web Server (GWS), which 
will coordinate the search and response

© 2012 Gribble, Lazowska, Levy, Zahorjan 22

• The index is partitioned into “shards.”  Each shard 
indexes a subset of the docs (web pages).  Each shard 
is replicated, and can be searched by multiple 
computers – “index servers”

3. The GWS routes your search to one index server 
associated with each shard, through another load-
balancer

4. When the dust has settled, the result is an ID for every 
doc satisfying your search, rank-ordered by relevance

© 2012 Gribble, Lazowska, Levy, Zahorjan 23

• The docs, too, are partitioned into “shards” – the 
partitioning is a hash on the doc ID.  Each shard 
contains the full text of a subset of the docs. Each shard 
can be searched by multiple computers – “doc servers”

5. The GWS sends appropriate doc IDs to one doc server 
associated with each relevant shard

6. When the dust has settled, the result is a URL, a title, 
and a summary for every relevant doc

© 2012 Gribble, Lazowska, Levy, Zahorjan 24

7. Meanwhile, the ad server has done its thing, the 
spell checker has done its thing, etc.

8. The GWS builds an HTTP response to your search 
and ships it off

• Many hundreds of computers have enabled you to 
search 400+TB of web in ~100 ms.



5

© 2012 Gribble, Lazowska, Levy, Zahorjan 25

• Enormous volumes of data
• Extreme parallelism
• The cheapest imaginable components

– Failures occur all the time
– You couldn’t afford to prevent this in hardware

• Software makes it
– Fault-Tolerant
– Highly Available
– Recoverable
– Consistent
– Scalable
– Predictable
– Secure

Google:  The Big Picture

© 2012 Gribble, Lazowska, Levy, Zahorjan 26

How on earth would you enable mere mortals 
write hairy applications such as this?

• Recognize that many Google applications have the 
same structure
– Apply a “map” operation to each logical record in order to 

compute a set of intermediate key/value pairs

– Apply a “reduce” operation to all the values that share the 
same key in order to combine the derived data appropriately

• Build a runtime library that handles all the details, 
accepting a couple of customization functions from 
the user – a Map function and a Reduce function

• That’s what MapReduce is
– Supported by the Google File System and the Chubby lock 

manager

– Augmented by the BigTable not-quite-a-database system

© 2012 Gribble, Lazowska, Levy, Zahorjan 27

David Baker

An extremely loosely coupled system:  BOINC

© 2012 Gribble, Lazowska, Levy, Zahorjan 28

© 2012 Gribble, Lazowska, Levy, Zahorjan 29 © 2012 Gribble, Lazowska, Levy, Zahorjan 30

Berkeley Open Infrastructure for Network Computing 



6

© 2012 Gribble, Lazowska, Levy, Zahorjan 31

David Baker and Zoran Popovic

Totally off the subject of OS:
Human Computation

© 2012 Gribble, Lazowska, Levy, Zahorjan 32

© 2012 Gribble, Lazowska, Levy, Zahorjan 33

Luis von Ahn

• Humans and computers have 
different computational strengths

• Can we exploit these differences?
– To differentiate computers from 

humans?
• E.g., to make it harder for spambots 

to acquire new email accounts from 
which to send spam

– To create human/machine 
computational systems that combine 
the best of each?

© 2012 Gribble, Lazowska, Levy, Zahorjan 34

Hours per year, world-wide, spent playing 
computer solitaire:  9 billion

Hours spent building the Panama Canal:  
20 million (less than a day of solitaire)

© 2012 Gribble, Lazowska, Levy, Zahorjan 35 © 2012 Gribble, Lazowska, Levy, Zahorjan 36

Where do the words 
come from?

Entire photo archive (years 1851‐1980) 
was completed in 2009



7

© 2012 Gribble, Lazowska, Levy, Zahorjan 37 © 2012 Gribble, Lazowska, Levy, Zahorjan 38

© 2012 Gribble, Lazowska, Levy, Zahorjan 39 © 2012 Gribble, Lazowska, Levy, Zahorjan 40

4367 registrants
39     countries
922   submissions
370 correct locations

40th Anniversary of the Internet 29 Oct – Announced
5 Dec – Balloons Up

$40k Prize

[Peter Lee, DARPA]


