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What is a “distributed system”?

• Nearly all systems today are distributed in some way
– they use email

– they access files over a network

– they access printers over a network

– they’re backed up over a network

– they share other physical or logical resources

– they cooperate with other people on other machines

– they access the web

– they receive video, audio, etc.
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Loosely-coupled systems

• Earliest systems used simple explicit network 
programs
– FTP (rcp): file transfer program

– telnet (rlogin/rsh): remote login program

– mail (SMTP)

• Each system was a completely autonomous 
independent system, connected to others on the 
network
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• Even today, most distributed systems are loosely-
coupled (although not that loosely!):
– each CPU runs an independent autonomous OS

– computers don’t really trust each other

– some resources are shared, but most are not

– the system may look differently from different hosts
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Closely-coupled systems

• A distributed system becomes more “closely-coupled” 
as it
– appears more uniform in nature

– runs a “single” operating system

– has a single security domain

– shares all logical resources (e.g., files)

– shares all physical resources (CPUs, memory, disks, 
printers, etc.)

• In the limit, a distributed system looks to the user as if 
it were a centralized timesharing system, except that 
it’s constructed out of a distributed collection of 
hardware and software components
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Tightly-coupled systems

• A “tightly-coupled” system usually refers to a 
multiprocessor
– runs a single copy of the OS with a single workload queue

– has a single address space

– usually has a single bus or backplane to which all 
processors and memories are connected

– has very low communication latency

– processors communicate through shared memory
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Some issues in distributed systems

• Transparency (how visible is the distribution)

• Security

• Reliability

• Performance

• Scalability

• Programming models

• Communication models
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Example:  Grapevine distributed mail service

• Xerox PARC, 1980
– cf. Microsoft Outlook/Exchange today!!!!!

• Goals
– cannot rely on integrity of client

– once the system accepts mail, it will be delivered

– no single Grapevine computer failure will make the system 
unavailable to any client either for sending or for receiving 
mail

• Components
– GrapevineUser package on each client workstation

– Registration Servers

– Message Servers 

• Implementation:  Remote Procedure Call
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Grapevine: Functional diagram
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Grapevine: Sending a message

• User prepares message using mail client

• Mail client contacts GrapevineUser package on 
same workstation to actually send message

• GrapevineUser package
– Contacts any Registration Server to get a list of Message 

Servers

– Contacts any Message Server to transmit message
• presents source and destination userids, and source 

password, for authentication
– Message Server uses any Registration Server to authenticate

• sends message body to Message Server
– Message Server places it in stable storage and acknowledges 

receipt
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Grapevine: Functional diagram
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Registries

• Actually, I lied:  There’s an additional step.
– For scalability, users are partitioned into registries – “user 

‘P.Q’” is user P in registry Q.

– Registries are replicated.

– There is one registry that is replicated on every registration 
server:  the registry of registries.

– So, when I said:
Message Server uses any Registration Server to authenticate

what actually happens is the Message Server contacts any 
Registration Server to obtain a list of those Registration 
Servers holding the registry of the user, then contacts one of 
those registration servers to authenticate the user
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Grapevine: Transport and buffering

• For each recipient of the message, Message Server 
contacts any Registration Server to obtain list of 
Message Servers holding mail for that recipient
– Same lie as before

• Sends a copy of the message to one of those 
Message Servers for that recipient
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Grapevine: Functional diagram
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Grapevine: Retrieving mail

• User uses mail client to contact GrapevineUser 
package on same workstation to retrieve mail

• GrapevineUser package
– Contacts any Registration Server to get a list of each 

Message Server holding mail for the user (“inbox site”)
• Same lie as before

– Contacts each of these Message Servers to retrieve mail
• presents user credentials

– Message Server uses any Registration Server to authenticate

• acknowledges receipt of messages so that the server can 
delete them from its storage
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Grapevine: Functional diagram
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Grapevine: Scalability

• Can add more Registration Servers

• Can add more Message Servers

• Only thing that didn’t scale was handling of 
distribution lists
– the accepting Message Server was responsible for 

expanding the list (recursively if necessary) and delivering to 
an appropriate Message Server for each recipient

– some distribution lists contained essentially the entire user 
community

• Jeff Dean (Google) told us they don’t even think 
about more than two decimal orders of magnitude
– fundamental design decisions will need to change

– advances in technology will make it possible
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Example:  Google search infrastructure

• It’s likely that Google has several million machines
– But let’s be conservative – 1,000,000 machines

– A rack holds 176 CPUs (88 1U dual-processor boards), so that’s 
about 6,000 racks

– A rack requires about 50 square feet (given datacenter cooling 
capabilities), so that’s about 300,000 square feet of machine room 
space (more than 6 football fields of real estate – although of 
course Google divides its machines among dozens of datacenters 
all over the world)

– A rack requires about 10kw to power, and about the same to cool, 
so that’s about 120,000 kw of power, or nearly 100,000,000 kwh 
per month ($10 million at $0.10/kwh)

• Equivalent to about 20% of Seattle City Light’s generating capacity
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• There are multiple clusters (of thousands of computers 
each) all over the world

• Many hundreds of machines are involved in a single 
Google search request (remember, the web is 400+TB)

1. DNS routes your search request to a nearby cluster
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• A cluster consists of Google Web Servers, Index Servers, 
Doc Servers, and various other servers (ads, spell 
checking, etc.)
– These are cheap standalone computers, rack-mounted, connected 

by commodity networking gear
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2. Within the cluster, load-balancing routes your search 
to a lightly-loaded Google Web Server (GWS), which 
will coordinate the search and response
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• The index is partitioned into “shards.”  Each shard 
indexes a subset of the docs (web pages).  Each shard 
is replicated, and can be searched by multiple 
computers – “index servers”

3. The GWS routes your search to one index server 
associated with each shard, through another load-
balancer

4. When the dust has settled, the result is an ID for every 
doc satisfying your search, rank-ordered by relevance
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• The docs, too, are partitioned into “shards” – the 
partitioning is a hash on the doc ID.  Each shard 
contains the full text of a subset of the docs. Each shard 
can be searched by multiple computers – “doc servers”

5. The GWS sends appropriate doc IDs to one doc server 
associated with each relevant shard

6. When the dust has settled, the result is a URL, a title, 
and a summary for every relevant doc
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7. Meanwhile, the ad server has done its thing, the 
spell checker has done its thing, etc.

8. The GWS builds an HTTP response to your search 
and ships it off

• Many hundreds of computers have enabled you to 
search 400+TB of web in ~100 ms.
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• Enormous volumes of data
• Extreme parallelism
• The cheapest imaginable components

– Failures occur all the time
– You couldn’t afford to prevent this in hardware

• Software makes it
– Fault-Tolerant
– Highly Available
– Recoverable
– Consistent
– Scalable
– Predictable
– Secure

Google:  The Big Picture
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How on earth would you enable mere mortals 
write hairy applications such as this?

• Recognize that many Google applications have the 
same structure
– Apply a “map” operation to each logical record in order to 

compute a set of intermediate key/value pairs

– Apply a “reduce” operation to all the values that share the 
same key in order to combine the derived data appropriately

• Build a runtime library that handles all the details, 
accepting a couple of customization functions from 
the user – a Map function and a Reduce function

• That’s what MapReduce is
– Supported by the Google File System and the Chubby lock 

manager

– Augmented by the BigTable not-quite-a-database system
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David Baker

An extremely loosely coupled system:  BOINC
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Berkeley Open Infrastructure for Network Computing 
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David Baker and Zoran Popovic

Totally off the subject of OS:
Human Computation
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Luis von Ahn

• Humans and computers have 
different computational strengths

• Can we exploit these differences?
– To differentiate computers from 

humans?
• E.g., to make it harder for spambots 

to acquire new email accounts from 
which to send spam

– To create human/machine 
computational systems that combine 
the best of each?
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Hours per year, world-wide, spent playing 
computer solitaire:  9 billion

Hours spent building the Panama Canal:  
20 million (less than a day of solitaire)
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Where do the words 
come from?

Entire photo archive (years 1851‐1980) 
was completed in 2009
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4367 registrants
39     countries
922   submissions
370 correct locations

40th Anniversary of the Internet 29 Oct – Announced
5 Dec – Balloons Up

$40k Prize

[Peter Lee, DARPA]


