10/14/12

Implementing Synchronization

Synchronization Summary

Use consistent structure

Always use locks and condition variables when
accessing shared data

Always acquire lock at beginning of procedure,
release at end

Always hold lock when using a condition variable
Always wait in while loop
Never spin in sleep()

Main Points

Implementing locks and CV’s using atomic
read-modify-write instructions

Hansen vs. Hoare semantics

— How to implement one with the other
Semaphores

— How to implement condition variables using
semaphores

Big Picture: Linux

Concurrent Applications

Semaphores Locks Condition Variables
Interrupt Disable Atomic Read/Modify/Write Instructions
Multiple Processors Hardware Interrupts




10/14/12

Big Picture: Pintos

Concurrent Kernel Data Structures
Locks and Condition Variables

Semaphores

Interrupt Disable

Hardware Interrupts, Uniprocessor

Implementing Synchronization

Take 1: using memory load/store

— See too much milk solution/Peterson’s algorithm
Take 2:

lock.acquire() { disable interrupts }
lock.release() { enable interrupts }

Pintos: how we protect the ready list!

Lock Implementation, Uniprocessor

LockAcquire(){
disablelnterrupts ();
if(value == BUSY){

waiting.add(current TCB);

LockRelease() {
disablelnterrupts ();
if (!waiting.Empty()){
thread = waiting.Remove();

suspend(); readyList.Append(thread);
}else { }else {

value = BUSY: value = FREE;
} }

enablelnterrupts (); enablelnterrupts ();

Multiprocessor

¢ Read-modify-write instructions

— Atomically read a value from memory, operate on it,
and then write it back to memory

— Intervening instructions prevented in hardware
* Examples

— Test and set

— Intel: xchgb, lock prefix

— Compare and swap
* Does it matter?

— Not for implementing locks and condition variables!




10/14/12

Spinlocks

Lock where the processor waits in a loop for the lock to
become free

— Assumes lock will be held for a short time
— Used to protect ready list to implement locks

SpinlockAcquire() {
while (testAndSet(&lockValue) == BUSY)

’

}
SpinlockRelease() {

Lock Implementation, Multiprocessor

LockAcquire(){
spinLock.Acquire();
disablelnterrupts ();
if(value == BUSY){

waiting.add(current TCB);

LockRelease() {
spinLock.Acquire();
disablelnterrupts ();
if ('waiting.Empty()){

thread = waiting.Remove();

suspend(); readyList.Append(thread);
}else { Yelse {

value = BUSY: value = FREE;
} }

enablelnterrupts ();

enablelnterrupts (); X
spinLock.Release();

spinLock.Release();

lockValue = FREE; } }
}
Lock Implementation, Linux Synchronization Equivalence

* Fast path * Can we implement Hansen condition variables

— If lock is FREE, and no one is waiting, test&set using Hoare semantics?
* Slow path * Hoare using Hansen?

— If lock is BUSY or someone is waiting, see previous . .

slide * Can we implement semaphores using

* User-level locks
— Fast path: acquire lock using test&set
— Slow path: system call to kernel, to use kernel lock

condition variables?

* Can we implement condition variables using
semaphores?




10/14/12

Hansen vs. Hoare semantics

* Hansen
— Signal puts waiter on ready list
— Signaller keeps lock and processor
* Hoare
— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

— Nested signals possible!

Bounded Buffer (Hansen)

get() { put(item) {
lock.acquire();
while (front == last)
empty.wait(lock); full.wait(lock);
item = buf[front % size] buf[last % size] = item;
front++; last++;
full.signal(lock);
lock.release();
return item; }
}

Initially: front = last = 0; size is buffer capacity

lock.acquire();
while ((last — front) == size)

empty.signal(lock);
lock.release();

empty/full are condition variables

Pre/Post Conditions

* What is state of the bounded buffer at lock
acquire?
— front <= last
— front + buffer size >= last
— (also true on return from wait)
* Also true at lock release!

* Allows for proof of correctness

FIFO Bounded Buffer
(Hoare semantics)

get() { put(item) {
lock.acquire(); lock.acquire();
if (front == last) if ((last — front) == size)
empty.wait(lock); full.wait(lock);
item = buf[front % size]; buf[last % size] = item;
front++; last++;
full.signal(lock);
lock.release();
return item;
} }
Initially: front = last = 0; size is buffer capacity
empty/full are condition variables

empty.signal(lock);
// CAREFUL: someone else ran
lock.release();




10/14/12

FIFO Bounded Buffer
(Hansen semantics)

* Create a condition variable for every waiter

* Queue condition variables (in FIFO order)

* Signal picks the front of the queue to wake up
* CAREFUL if spurious wakeups!

* Easily extends to case where queue is LIFO,
priority, priority donation, ...
— With Hoare semantics, not as easy

FIFO Bounded Buffer
(Hansen, put() is similar)

get() { item = buf[front % size]

lock.acquire(); front++;

if (front == last) or if (InextPut.empty())
nextGet.notEmpty() { nextPut.first()->signal(lock);

self = new Condition; lock.release();
nextGet.Append(self); return item;
while (front == last) }

self.wait(lock);
nextGet.Remove(self);
delete self;
}
Initially: front = last = 0; size is buffer capacity
nextGet, nextPut are queues of Condition Variables

Semaphores

* Semaphore has a non-negative integer value

— P() atomically waits for value to become > 0, then
decrements

— V() atomically increments value (waking up waiter if
needed)
* Semaphores are like integers except:
— Only operations are P and V
— Operations are atomic
« If value is 1, two P’s will result in value 0 and one waiter
* Semaphores are useful for
— Unlocked wait: interrupt handler, fork/join

Semaphore Bounded Buffer

get() { put(item) {
empty.P(); full.P();
mutex.P(); mutex.P();
item = buf[front % size] buf[last % size] = item;
front++; last++;
mutex.V(); mutex.V();
full.v(); empty.V();
return item; }
}

Initially: front = last = 0; size is buffer capacity
empty/full are semaphores




10/14/12

Implementing Condition Variables
using Semaphores (Take 1)
wait(lock) {
lock.release();
sem.P();
lock.acquire();
}

signal() {
sem.V();

}

Implementing Condition Variables
using Semaphores (Take 2)

wait(lock) {
lock.release();
sem.P();
lock.acquire();
1
signal() {
if semaphore is not empty
sem.V();

}

Implementing Condition Variables

using Semaphores (Take 3)

wait(lock) {
sem = new Semaphore;
queue.Append(sem); // queue of waiting threads
lock.release();
sem.P();
lock.acquire();
}
signal() {
if lqueue.Empty()
sem = queue.Remove();
sem.V(); // wake up waiter

}




