Threads (part 2)
(plus some loose ends)

Main Points

* Wrap up protection
— System calls and upcalls

* Wrap up threads
— Programming model
— Implementation

* Race conditions

— Motivation for synchronization

System Calls

User Program Kernel
main () { syscall(arg1, arg2) {
syscall(arg1, arg2); do operation
J }
1 4
(d/ /l\@ (3)/l\ J/()
User Stub Kernel Stub
(2)
syscall (arg1, arg2) { Hardware Trap handler() {
trap N Copy arguments
return / from user memory
} check arguments
< syscall(arg1, arg2);
Trap Return copy return value
(5) into user memory

return

Kernel System Call Handler

Locate arguments
— In registers or on user(!) stack

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back
— Into user memory

Web Server Example

Server n I
reques 4. parse request reply
buffer P q 9. format reply buffer
1. network/\ 10. network 5.file N
Socket 3. kernel Socket read 8. kernel
read copy write copy
Kernel
V N/ V
11. kernel copy
from user buffer
into network buffer
/N /N
. 12. format outgoing 6. disk)
2. copy arriving packet and DMA request 7. disk
packet (DMA) data (DMA)
Hardware
A\ A\

Network Interface

Disk Interface

Booting

Disk
/\
N
bootloader
(1) BIOS copies I(())Zilae;r;epl
bootloader
(2) bootloader Q
copies OS (3) OS kernel
kernel copies login
application
bootloader OS kernel login app
BIOS [instructions instructions instructions
and data and data and data

Physical Memory

Virtual Machine

Guest Guest
Guest/Host Process Process
est
User Mode oY
syscall program
counter
Host User Guest Kernel - timer
Mode/Guest guest PC guest guest file system guest handler
Kernel Mode guest SP_% exceptionf and other kernel Interrupt syscall
guest flags stack services table = handler
Host Kernel Host Kernel timer
Mode host PC host . Virtual host handler
host SP —% exception Disk interrupt syscall
host flags stack table handler
Physical

Hardware Disk

User-Level Virtual Machine

* How does VM Player work?
— Runs as a user-level application

— How does it catch privileged instructions, interrupts,
device 1/0O, ...

* |nstalls kernel driver, transparent to host kernel
— Requires administrator privileges!
— Modifies interrupt table to redirect to kernel VM code
— If interrupt is for VM, upcall

— If interrupt is for another process, reinstalls interrupt
table and resumes kernel

Upcall: User-level interrupt

* AKA UNIX signal

— Notify user process of event that needs to be handled
right away
e Time-slice for user-level thread manager
* Interrupt delivery for VM player

* Direct analogue of kernel interrupts
— Signal handlers — fixed entry points
— Separate signal stack
— Automatic save/restore registers — transparent resume
— Signal masking: signals disabled while in signal handler

Upcall: Before

program counter ,
signal_handler() {

X = y + Z,
stack pointer J

Signal Stack
stack:

Upcall: After

program counter .
N signal_handler() {

stack pointer }

X:y'l'Z;

Signal Stack
stack:

PC
saved
registers

Last Time

e Thread use case

— Operating systems need to be able to handle multiple
things at once

* processes, interrupts, background system maintenance
— Servers need mtao
* Multiple connections handled simultaneously

— Parallel programs need mtao
* To achieve better performance

— Programs with user interfaces often need mtao
* To achieve user responsiveness while doing computation

— Network and disk bound programs need mtao
* To hide network/disk latency

Last Time

Threads can be implemented in several ways

— Multiple user-level threads, multiplexed onto a
UNIX process (early Java)

— Multiple single-threaded processes (early UNIX,
Pintos)

— Mixture of single and multi-threaded processes
and kernel threads (Linux, MacOS, Windows)

* To the kernel, a kernel thread and a single threaded
user process look quite similar

— Scheduler activations (Windows)

Last Time (continued)

* Thread state (thread control block)
— Program counter
— Stack
— Registers
— Priority

Thread Abstraction

* |Infinite number of processors

* Threads execute with variable speed
— Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality
r- TSI o oo S b
Threads|S|S|S|S|S| |S|SIS S S
S S 2L S S-S L T R S R
| | | | | | | | |
Processors | k' !)”777'|)ﬂ777'|)77777': :)»77':)”77':

T T R R

L — 1L = 1 _"_1_ —_1_ = 4 L — "
Running Ready
Threads Threads

Thread Operations

sthread_fork(func, args)
— Create a new thread to run func(args)
— Pintos: thread_create

sthread_yield()
— Relinquish processor voluntarily
— Pintos: thread_yield
sthread_join(thread)
— In parent, wait for forked thread to exit, then return
— Pintos: tbd (see section)
sthread exit
— Quit thread and clean up, wake up joiner if any
— Pintos: thread_exit

Main: Fork 10 threads
call join on them, then exit

bash-3.2$./threadHello

° What Other Hello from thread 0
Hello from thread 1
: : Thread 0 returned 100
interleavings are Holto from thread 3
. .p Hello from thread 4
pOSS|bIe H Thread 1 returned 101
Hello from thread 5
. Hello from thread 2
e Whatis Hello from thread 6
. Hello from thread 8
MaxXximum # Of Hello from thread 7
Hello from thread 9
1 Thread 2 returned 102
threads runnlng Thread 3 returned 103
. ‘? Thread 4 returned 104
at Same tlme . Thread 5 returned 105
Thread 6 returned 106
* . Thread 7 returned 107
o
Mlnlmum? Thread 8 returned 108

Thread 9 returned 109
Main thread done.

Thread States

Scheduler
Thread Creation Resumes Thread Thread Exit
/—\
e.g., €.g.,

sthread create () —
Thread Yields/
Scheduler

Suspends Thread
e.g., sthread yield()

sthread exit()

Event Occurs
e.g., other thread
calls
sthread join()

Thread Waits for Event

e.qg.,
sthread join()

Implementing threads

 Thread_fork(func, args)

— Allocate thread control block

— Allocate stack

— Build stack frame for base of stack (stub)

— Put func, args on stack

— Put thread on ready list

— Will run sometime later (maybe right away!)
e stub(func, args)

— Call (*func)(args)

— Call sthread_exit()

— Pintos: switch_entry
e Switch_entry designed to work with switch_threads

Implementing (voluntary) thread
context switch

* User-level threads in a single-threaded process
— Save registers on old stack
— Switch to new stack, new thread
— Restore registers from new stack
— Return

e Kernel threads
— Exactly the same!

— Pintos: thread switch always between kernel threads,
not between user process and kernel thread

Pintos: switch threads (oldT, nextT)
(interrupts disabled!)

Save caller’s register state
NOTE: %eax, etc. are ephemeral

This stack frame must match the
one set up by thread_create()

pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
mov! %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
mov! (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

Thread switch on an interrupt

 Thread switch can occur due to timer or I/O
interrupt

— Tells OS some other thread should run
e Simple version (Pintos)
— End of interrupt handler calls switch_threads()

— When resumed, return from handler resumes kernel
thread or user process

e Faster version (textbook)

— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Threads in a Process

Threads are useful at user-level

— Parallelism, hide I/O latency, interactivity
Option A (early Java): user-level library

— Context switch in library

— Kernel switches between processes, e.g., on system call |/O
Option B (Linux, MacOS): use kernel threads

— System calls for thread fork, join, exit

— Kernel does context switching
Option C (Windows): scheduler activations

— Kernel allocates processors to user-level library

— Thread library implements context switch

— System call I/0O that blocks triggers upcall
Option D: Asynchronous I/O

