9/28/12

The Kernel Abstraction
(part 2)

Last Time

* Protection
— prevent buggy or malicious user programs from
corrupting the operating system or other apps
* Hardware support
— Privileged instructions, not available at user-level
* Exception trap to kernel if used at user-level
— Memory protection

« Virtual address -> physical address
« If invalid virtual address, exception

Main Points

* Hardware support for dual-mode operation
— Kernel-mode: execute with complete privileges
— User-mode: execute with fewer privileges

* Safe control transfer
— How do we switch from one mode to the other?
— Preventing misuse of control transfer

Virtual Addresses

* Translation done in hardware, using a table
* Table set up by operating system kernel

Translation Box

Physical Address
Virtual Address

Physical

Processor| Memory

raise exception

Instruction fetch or data read/write (untranslated)

9/28/12

Virtual Address Layout

* Plus shared code segments, dynamically linked
libraries, memory mapped files, ...

Virtual Addresses
(Process Layout)

CODE DATA HEAP STACK

CODE DATA HEAP | STACK

Physical Memory

Example: Corrected
(What Does this Do?)

int staticVar =0; // a static variable
main() {
int localVar = 0; // a procedure local variable

staticVar += 1; localVar += 1;

sleep(10); // sleep causes the program to wait for x seconds
printf ("static address: %x, value: %d\n", &staticVar, staticVar);
printf ("procedure local address: %x, value: %d\n", &localVar, localVar);

}

Produces:
static address: 5328, value: 1
procedure local address: ffffffe2, value: 1

Hardware Timer

* Hardware device that periodically interrupts the
processor
— Returns control to the kernel timer interrupt handler
— Interrupt frequency set by the kernel
* Not by user code!
— Interrupts can be temporarily deferred

* Not by user code!
* Crucial for implementing mutual exclusion

— Pintos assignment 1: generalize hardware timer to a
software timer

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory. Why must
the screen’s buffer memory be protected?

9/28/12

Question

* Suppose we had a perfect object-oriented
language and compiler, so that only an
object’s methods could access the internal
data inside an object. If the operating system
only ran programs written in that language,
would it still need hardware memory address
protection?

Mode Switch

* From user-mode to kernel
— Interrupts
« Triggered by timer and 1/O devices
— Exceptions
« Triggered by unexpected program behavior
* Or malicious behavior!
— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

* Only limited # of very carefully coded entry points

Mode Switch

* From kernel-mode to user

— New process/new thread start
* Jump to first instruction in program/thread

— Return from interrupt, exception, system call
* Resume suspended execution

— Process/thread context switch
* Resume some other process

— User-level upcall

* Asynchronous notification to user program

How do we take interrupts safely?

Interrupt vector
— Limited number of entry points into kernel
Kernel interrupt stack
— Handler works regardless of state of user code
Interrupt masking
— Handler is non-blocking
Atomic transfer of control
— Single instruction to change:
* Program counter
+ Stack pointer
* Memory protection
* Kernel/user mode
Transparent restartable execution
— User program does not know interrupt occurred

9/28/12

Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events

Processor

Interrupt Stack

* Per-processor, located in kernel (not user)
memory

Reqist Interrupt
egister Vector — Usually a thread has both: kernel and user stack
- handleTimerl .
andle lTer nterrupt() { * Why can’t interrupt handler run on the stack

} of the interrupted user process?
handleDivideByZero() {
}
handleSystemcall() {
}

Interrupt Stack Interrupt Masking

running readyto run waiting for /O * Interrupt handler runs with interrupts off

— oo oroct oroct — Reenabled when interrupt completes
proe? - proc2 - pT * OS kernel can also turn interrupts off
— — Eg., when determining the next process/thread to run
— If defer interrupts too long, can drop I/O events
o o — On x86
Kernel Stack syscall * CLI: disable interrrupts
handler « STI: enable interrupts
N yoi‘:me' « Only applies to the current CPU
* Cf. implementing synchronization, chapter 5

9/28/12

Interrupt Handlers

Non-blocking, run to completion

— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration

— Wake up other threads to do any real work
* Pintos: semaphore_up

Rest of device driver runs as a kernel thread
— Queues work for interrupt handler
— (Sometimes) wait for interrupt to occur

Atomic Mode Transfer

* On interrupt (x86)
— Save current stack pointer
— Save current program counter

— Save current processor status word (condition
codes)

— Switch to kernel stack; put SP, PC, PSW on stack
— Switch to kernel mode

— Vector through interrupt table

— Interrupt handler saves registers it might clobber

User-level Registers Kernel
Process
code: [SSiEsP code:
CsiEP
foo 04 EFLAGS handler{
while(..) other pusha
X=x+1; registers:
yove EAX, EBX,)
)
Exception
stack: #

Stack

Userlevel Registers Kernel
Process
code: SSEsP code:
CS:EIP
fo0 0 (FrACS handler({
while(..) { Mother | pusha
x=x+1; registers: .
- =] EAX, EBX, }
,
Exception
stack: P

Stack

SS
ESP

EFLAGS
[«

EIP
error

9/28/12

User-level
Process

code:

foo ()
while(..)
x=xt;
y=y2
1

stack:

3

After

Registers

SSESP
Cs:Ep

EFLAGS hendierdt
other P
registers:)
EAX,EBX,

Kernel

code:

Exception
Stack

At end of handler

Handler restores saved registers

Atomically return to interrupted process/
thread

— Restore program counter

— Restore program stack

— Restore processor status word/condition codes
— Switch to user mode

System Calls

User Program

main () {

syscall(arg1, arg2);

}
[{)]
(6)
User Stub

syscall (arg1, arg2) {
trap
return

}

2)
Hardware Trap

—

Trap Return
(5)

Kernel

syscall(arg1, arg2) {

do operation

}
L

Kernel Stub

handler() {

copy arguments
from user memory

check arguments

syscall(arg1, arg2);

copy return value
into user memory

return

Kernel System Call Handler

Locate arguments

— In registers or on user(!) stack

Copy arguments

— From user memory into kernel memory

— Protect kernel from malicious code evading checks
Validate arguments

— Protect kernel from errors in user code

Copy results back

— into user memory

9/28/12

Costs of Dual-Mode Operation Booting

Server

4. parse request 9. format reply

1. network 10. network 5. file
socket 3. kernel socket read 8. kernel
read copy write copy

(1) BIOS copies
bootloader

(2) bootloader

11. kernel copy copies OS (3) OS kernel
[[[D e et o [[[D kernel copies login
into network buffer application
2. copy arriving ;z;;‘:’(’:i;“;ﬁ:ing fé::;s:st 7. disk bootloader OS kernel login app
packet (DMA) data (DMA) BIOS |instructions instructions instructions
and data and data and data
Hardware

Network Interface Disk Interface Physical Memory

Virtual Machine

Guest Guest
Guest/Host Process Process guest
User Mode syscall e program
counter
Host User y Guest Kernel timer
Mode/Guest guest PC guest guest file system handler
Kernel Mode guest SP eption| and other kernel syscall
guest flags stack services handler
Host Kernel) Host Kernel timer
Mod: host
€ :osl :g eption Virtual handI”er
ost i sysca
Disk Y
host flags I& handler

Physical

Hardware Disk

