11/30/12

Security and Course Wrapup

Last Time

* Security theory
— Access control matrix
— Passwords
— Encryption
* Security practice
— Example successful attacks

Main Points

* Security practice
— More example attacks
— How to write an undetectable self-replicating virus

¢ Course wrapup

UNIX talk

* UNIX talk was an early version of Internet chat
— For users logged onto same machine

* App was setuid root
— Needed to write to everyone’s terminal

* Butit had a bug...
— Signal handler for ctl-C




11/30/12

Netscape

How do you pick a session key?

— Early Netscape browser used time of day as seed to the
random number generator

— Made it easy to predict/break

How do you download a patch?

— Netscape offered patch to the random seed problem for
download over Web, and from mirror sites

— four byte change to executable to make it use attacker’s
key

Code Red/Nimda/Slammer

* Dictionary attack of known vulnerabilities
— known Microsoft web server bugs, email attachments, browser helper
applications, ...
— used infected machines to infect new machines
* Code Red:
— designed to cause machines surf to whitehouse.gov simultaneously
¢ Nimda:
— Left open backdoor on infected machines for any use
— Infected ~ 400K machines
e Slammer:
— Single UDP packet on MySQL port
— Infected 100K+ vulnerable machines in under 10 minutes
* Million node botnets now common

More Examples

Housekeys

ATM keypad
Automobile backplane
Pacemakers

Thompson Virus

* Ken Thompson self-replicating program

— installed itself silently on every UNIX machine,
including new machines with new instruction
sets




11/30/12

Add backdoor to login.c

* Step 1: modify login.c
A:
if (name == “ken”) {
don’t check password;

login ken as root;

}

* Modification is too obvious; how do we hide

it?

Hiding the change to login.c

Step 2: Modify the C compiler
B:
if see trigger {
insert A into the input stream
}
* Add trigger to login.c
/* gobblygook */
Now we don’t need to include the code for the
backdoor in login.c, just the trigger

— But still too obvious; how do we hide the modification to
the C compiler?

Hiding the change to the compiler

* Step 3: Modify the compiler
C:
if see trigger2 {
insert B and C into the input stream
}
* Compile the compiler with C present
— now in object code for compiler

* Replace Cin the compiler source with trigger2

Compiler compiles the compiler

* Every new version of compiler has code for B,C
included
— as long as trigger2 is not removed
— and compiled with an infected compiler
— if compiler is for a completely new machine: cross-

compiled first on old machine using old compiler

« Every new version of login.c has code for A included
— as long as trigger is not removed
— and compiled with an infected compiler




11/30/12

Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
* without reading any input files!

char *buf =

"char *buf = %c%s%c; main(){printf(buf, 34, buf, 34);}";
main() { printf(buf, 34, buf, 34); }

Security Lessons

* Hard to re-secure a machine after penetration
— how do you know you’ve removed all the backdoors?
* Hard to detect if machine has been penetrated
— Western Digital example
* Any system with bugs is vulnerable

— and all systems have bugs: fingerd, ping of death, Code
Red, nimda, ...

Course Wrapup

Major Topics

Protection

— Kernel/user mode, system calls
Concurrency

— Threads, monitors, deadlock, scheduling
Memory management

— Address translation, demand paging
File systems

— Disk, flash, file layout, transactions




11/30/12

OS as Referee

Protection

— OS isolates apps from bugs or attacks in other apps
— Pipes and files for interprocess communication
CPU scheduling

— OS decides which application thread is next onto the
processor

Memory allocation

— OS decides how many memory frames given to each
app

File system

— OS enforces security policy in accessing file data

CPU interrupts and time slicing

Apps share physical machine

OS as lllusionist

Physical Reality
Limited # of CPUs

Abstraction

processes/threads

Limited physical memory

Computers can crash
atomic and durable

Can assume near infinite # of

Each thread appears to run
sequentially (at variable speed)

Near-infinite virtual memory

Execution on virtual machine
with isolation between apps

Changes to file system are

OS as Glue

Locks and condition variables

— Not test&set instructions

Named files and directories

— Not raw disk block storage

Pipes: stream interprocess communication
— Not fixed size read/write calls
Memory-mapped files

— Not raw disk reads/writes

OS Trends and Future Directions

Optimize for the computer’s time
=> optimize for the user’s time

One processor => many

One computer => server clusters

Disk => solid state memory

Operating systems at user level
— Browsers, databases, servers, parallel runtimes




11/30/12

Advertisements

CSE 452: Distributed Systems

— How can we build scalable systems that work even
though parts of the system can fail at any time?

CSE 484: Security

— How can we build systems that can withstand attack?

CSE 444: Databases

— How do we build systems that can manage giant
amounts of data reliably and efficiently?

CSE 461: Networks

— How do we build protocols to allow reliable and
efficient communication between computers?




