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Security:
Principles and Practice

Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
* without reading any input files!
— ex: main() { printf(“main () { printf(“main () ...

Last Time

* Approaches to storage reliability
— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

Main Points

* Wrapup storage reliability
— RAID
* Security theory
— Access control matrix
— Passwords
— Encryption
* Security practice
— Example successful attacks
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Storage Availability

* Storage reliability: data fetched is what you stored
— Transactions, redo logging, etc.
» Storage availability: data is there when you want it
— More disks => higher probability of some disk failing
— Data available ~ Prob(disk working)*k
« If failures are independent and data is spread across k disks

— For large k, probability system works -> 0

RAID

* Replicate data for availability
— RAID 0: no replication

— RAID 1: mirror data across two or more disks
* Google File System replicated its data on three disks,
spread across multiple racks
— RAID 5: split data across disks, with redundancy to
recover from a single disk failure
— RAID 6: RAID 5, with extra redundancy to recover
from two disk failures

RAID 1: Mirroring
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Parity
 Parity block: Blockl xor block2 xor block3 ...

10001101  blockl
01101100  block2
11000110  block3

00100111  parity block

¢ Can reconstruct any missing block from the others
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RAID 5: Rotating Parity
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RAID Update

* Mirroring

— Write every mirror
* RAID-5: to write one block

— Read old data block

— Read old parity block

— Write new data block

— Write new parity block

* Old data xor old parity xor new data

* RAID-5: to write entire stripe

— Write data blocks and parity

Non-Recoverable Read Errors

* Disk devices can lose data
— One sector per 10715 bits read

— Causes:
* Physical wear
* Repeated writes to nearby tracks

* What impact does this have on RAID recovery?

Read Errors and RAID recovery

* Example
— 10 1 TB disks, and 1 fails
— Read remaining disks to reconstruct missing data
* Probability of recovery =
(1-10715)7(9 disks * 8 bits * 10212 bytes/disk)
=93%
* Solutions:

— RAID-6: two redundant disk blocks
 parity, linear feedback shift

— Scrubbing: read disk sectors in background to find and
fix latent errors




11/28/12

Security: Theory

Principals

— Users, programs, sysadmins, ...
Authorization

— Who is permitted to do what?
Authentication

— How do we know who the user is?
Encryption

— Privacy across an insecure network

— Authentication across an insecure network
Auditing

— Record of who changed what, for post-hoc diagnostics

Authorization

* Access control matrix
— For every protected resource, list of who is
permitted to do what
— Example: for each file/directory, a list of
permissions
* Owner, group, world: read, write, execute

« Setuid: program run with permission of principal who
installed it

— Smartphone: list of permissions granted each app

Principle of Least Privilege

Grant each principal the least permission
possible for them to do their assigned work
— Minimize code running inside kernel

— Minimize code running as sysadmin

Practical challenge: hard to know

— what permissions are needed in advance

— what permissions should be granted
 Ex: to smartphone apps
* Ex: to servers

Authorization with Intermediaries

* Trusted computing base: set of software
trusted to enforce security policy
* Servers often need to be trusted

— E.g.: storage server can store/retrieve data,
regardless of which user asks

— Implication: security flaw in server allows attacker
to take control of system
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Authentication

* How do we know user is who they say they
are?

e Try #1: user types password
— User needs to remember password!
— Short passwords: easy to remember, easy to guess
— Long passwords: hard to remember

Question

* Where are passwords stored?
— Password is a per-user secret
—Inafile?
* Anyone with sysadmin permission can read file
— Encrypted in a file?
« If gain access to file, can check passwords offline
« If user reuses password, easy to check against other systems
— Encrypted in a file with a random salt?

* Hash password and salt before encryption, foils
precomputed password table lookup

Encryption

Sender Receiver
Plaintext (M) Plaintext (M)

Decrypt
D(C, KP)

* Cryptographer chooses functions E, D and keys KE, KP

— Suppose everything is known (E, D, M and C), should not be
able to determine keys KE, KP and/or modify msg

— provides basis for authentication, privacy and integrity

Ciphertext (C)

Symmetric Key (DES, IDEA)

Plaintext Plaintext

Decrypt with
symmetric key

¢ Single key (symmetric) is shared between parties,
kept secret from everyone else
— Ciphertext = (M)”K; Plaintext = M = ((M)*K)AK
— if K kept secret, then both parties know M is authentic and
secret

Encrypt with
symmetric ke
Ciphertext
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Public Key (RSA, PGP)

Plaintext Plaintext

Encrypt with Decrypt with
public key private key

Keys come in pairs: public and private
— Each principal gets its own pair

— Public key can be published; private is secret to
entity

* can’t derive K-private from K-public, even given
M, (M)*K-priv

Secret Ciphertext

Public Key: Authentication

Plaintext Plaintext
Encrypt with Decrypt with

PRIVATE key PUBLIC key

Authentic ciphertext

Keys come in pairs: public and private
— M = ((M)"K-private)*K-public
— Ensures authentication: can only be sent by sender

Public Key: Secrecy

Plaintext Plaintext
Encrypt with Decrypt with
PUBLIC key Private key

Secret ciphertext f

Keys come in pairs: public and private
— M = ((M)"K-public)AK-private
— Ensures secrecy: can only be read by receiver

Encryption Summary

* Symmetric key encryption

— Single key (symmetric) is shared between parties, kept
secret from everyone else

— Ciphertext = (M)*K
* Public Key encryption
— Keys come in pairs, public and private
— Secret: (M)"K-public
— Authentic: (M)”K-private
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Two Factor Authentication

Can be difficult for people to remember encryption
keys and passwords

* Instead, store K-private inside a chip

— use challenge-response to authenticate smartcard
— Use PIN to prove user has smartcard

Challenge;

smartcard
response:
/(X/JW/

Public Key -> Session Key

* Public key encryption/decryption is slow; so can use public
key to establish (shared) session key
— assume both sides know each other’s public key

client
((K,y,x+1)AC-public)AS-priv
client
authenticates

server

(y+1)7K
 ‘ server

authenticates
client

Symmetric Key -> Session Key

* In symmetric key systems, how do we gain a
session key with other side?
— infeasible for everyone to share a secret with
everyone else
— solution: “authentication server” (Kerberos)
« everyone shares (a separate) secret with server
« server provides shared session key for A <->B
— everyone trusts authentication server
« if compromise server, can do anything!

Kerberos Example

Server

(A<->B, Kab)"Ksb
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* Cryptographic checksum: message integrity

digest

Message Digests (MD5, SHA)

— Typically small compared to message (MD5 128 bits)
— “One-way”: infeasible to find two messages with same

Initial digest ‘ Message (padded)

512 bits | 512 bits |

Message digest

| 512 bits |

Security Practice

¢ In practice, systems are not that secure
— hackers can go after weakest link
* any system with bugs is vulnerable
— vulnerability often not anticipated
« usually not a brute force attack against encryption system
— often can’t tell if system is compromised
* hackers can hide their tracks

— can be hard to resecure systems after a breakin
* hackers can leave unknown backdoors

Tenex Password Attack

* Early system supporting virtual memory
* Kernel login check:
for (i = 0; i < password length; i++) {

if (password[i] != userpwd(i]) return error;
}

return ok

Internet Worm

¢ Used the Internet to infect a large number of
machines in 1988
— password dictionary
— sendmail bug
« default configuration allowed debug access
« well known for several years, but not fixed
— fingerd: finger tom@cs
« fingerd allocated fixed size buffer on stack
« copied string into buffer without checking length

« encode virus into string!

¢ Used infected machines to find/infect others
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Ping of Death

IP packets can be fragmented, reordered in flight
Reassembly at host

— can get fragments out of order, so host allocates buffer to
hold fragments

Malformed IP fragment possible

— offset + length > max packet size

— Kernel implementation didn’t check

Was used for denial of service, but could have been
used for virus propagation

Netscape

Used time of day to pick session key

— easy to predict, break

Offered replacement browser code for download
over Web

— four byte change to executable made it use attacker’s key
Buggy helper applications (ex: pdf)

— if web site hosts infected content, can infect clients that
browse to it

Code Red/Nimda/Slammer

Dictionary attack of known vulnerabilities

— known Microsoft web server bugs, email attachments, browser helper
applications, ...

— used infected machines to infect new machines
Code Red:
— designed to cause machines surf to whitehouse.gov simultaneously
Nimda:
— Left open backdoor on infected machines for any use
— Infected ~ 400K machines; approx ~30K still infected
Slammer:
— Single UDP packet on MySQL port
— Infected 100K+ vulnerable machines in under 10 minutes
350K node botnets now common

More Examples

Housekeys

ATM keypad
Automobile backplane
Pacemakers
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Thompson Virus

* Ken Thompson self-replicating program

— installed itself silently on every UNIX machine,
including new machines with new instruction
sets

Add backdoor to login.c

* Step 1: modify login.c
A:
if (name == “ken”) {
don’t check password;

login ken as root;

}

* Modification is too obvious; how do we hide
it?

Hiding the change to login.c

¢ Step 2: Modify the C compiler
B:
if see trigger {
insert A into the input stream

}

* Add trigger to login.c
/* gobblygook */
* Now we don’t need to include the code for the
backdoor in login.c, just the trigger

— But still too obvious; how do we hide the modification to
the C compiler?

Hiding the change to the compiler

* Step 3: Modify the compiler
C:
if see trigger2 {
insert B and C into the input stream
}
* Compile the compiler with C present
— now in object code for compiler

* Replace Cin the compiler source with trigger2

10
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Compiler compiles the compiler

* Every new version of compiler has code for B,C
included

— as long as trigger2 is not removed

— and compiled with an infected compiler

— if compiler is for a completely new machine: cross-
compiled first on old machine using old compiler

Every new version of login.c has code for A included

— as long as trigger is not removed

— and compiled with an infected compiler

Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
* without reading any input files!
— ex: main() { printf(“main () { printf(“main () ...

Security Lessons

* Hard to resecure a machine after penetration
— how do you know you’ve removed all the backdoors?
* Hard to detect if machine has been penetrated
— Western Digital example
* Any system with bugs is vulnerable

— and all systems have bugs: fingerd, ping of death, Code
Red, nimda, ...
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