11/28/12

Security:
Principles and Practice

Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
* without reading any input files!
— ex: main() { printf(“main () { printf(“main () ...

Last Time

* Approaches to storage reliability
— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

Main Points

* Wrapup storage reliability
— RAID
* Security theory
— Access control matrix
— Passwords
— Encryption
* Security practice
— Example successful attacks

11/28/12

Storage Availability

* Storage reliability: data fetched is what you stored
— Transactions, redo logging, etc.
» Storage availability: data is there when you want it
— More disks => higher probability of some disk failing
— Data available ~ Prob(disk working)*k
« If failures are independent and data is spread across k disks

— For large k, probability system works -> 0

RAID

* Replicate data for availability
— RAID 0: no replication

— RAID 1: mirror data across two or more disks
* Google File System replicated its data on three disks,
spread across multiple racks
— RAID 5: split data across disks, with redundancy to
recover from a single disk failure
— RAID 6: RAID 5, with extra redundancy to recover
from two disk failures

RAID 1: Mirroring

_ s

. . Disk 0 Disk 1
L]

Repllcate ertes to Data Block 0 Data Block 0
H Data Block 1 Data Block 1
both disks Data Block2 Data Block 2
Data Block 3 Data Block 3
Data Block 4 Data Block 4
* Reads can go to Datalocks Data ok 5
. . Data Block 6 Data Block 6
Data Block 7 Data Block 7
elther d|5k Data Block 8 Data Block 8
Data Block 9 Data Block 9
Data Block 10 Data Block 10
Data Block 11 Data Block 11
Data Block 12 Data Block 12
Data Block 13 Data Block 13
Data Block 14 Data Block 14
Data Block 15 Data Block 15
Data Block 16 Data Block 16
Data Block 17 Data Block 17
Data Block 18 Data Block 18
Data Block 19 Data Block 19

. .

: :

: :

L

Parity
 Parity block: Blockl xor block2 xor block3 ...

10001101 blockl
01101100 block2
11000110 block3

00100111 parity block

¢ Can reconstruct any missing block from the others

11/28/12

RAID 5: Rotating Parity

[— ———— [— i ————

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
Strip Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0
[Parity ©.00) | [Data Block 0] [Data Block 4] Data Block 8 [Data Block 12]
Stripe 0 [Parity (1,0,0) | [DataBlock1 | [Data Block5_| Data Block 9 [Data Block 13 |
[Parity 2,000 | [Data Block2 | [Data Block6 | Data Block 10 [Data Block 14 |
[[Parity 3,0.0) | [DataBlock3 | [Data Block7_| Data Block 11 [Data Block 15 |
trip (0,1 Strip (1,1 trip (2,1 trip (3,1) trip (4,1
[Data Block 16 | [[Parity 0.1.1) | [Data Block 20 | [DataBlock 24 | [Data Block 28 |
Stripe 1 [Data Block 17 | [[Parity 0,1,1) | [Data Block 21 | [DataBlock 25 | [Data Block 29 |
[Data Block 18 | [CParity @1,1) | [Data Block 22 | [Data Block 26 | [Data Block 30 |
[Data Block19 | [CParity 31,1 | [Data Block 23 | [Data Block 27 | [Data Block 31
Strip (0,2) trip (1,2) Strip (2,2) trip (3,2) Strip (4,2)
[Data Block 32 | ata Block 36 | [Parity (0.2.2) | [Data Block 40 | [Data Block 44 |
Stripe 2 [Data Block 33 | [DataBlock 37 | [Parity (1.2,2) | [Data Block 41 | [Data Block 45 |
[Data Block 34 | [Data Block 38 | [Parity 2.2.2) | [DataBlock 42 | [Data Block 46 |
[Data Block35 | ata Block 39 | [Parity 3.2.2) | [DataBlock 43 | ["Data Block 46|
.
.
.

RAID Update

* Mirroring

— Write every mirror
* RAID-5: to write one block

— Read old data block

— Read old parity block

— Write new data block

— Write new parity block

* Old data xor old parity xor new data

* RAID-5: to write entire stripe

— Write data blocks and parity

Non-Recoverable Read Errors

* Disk devices can lose data
— One sector per 10715 bits read

— Causes:
* Physical wear
* Repeated writes to nearby tracks

* What impact does this have on RAID recovery?

Read Errors and RAID recovery

* Example
— 10 1 TB disks, and 1 fails
— Read remaining disks to reconstruct missing data
* Probability of recovery =
(1-10715)7(9 disks * 8 bits * 10212 bytes/disk)
=93%
* Solutions:

— RAID-6: two redundant disk blocks
 parity, linear feedback shift

— Scrubbing: read disk sectors in background to find and
fix latent errors

11/28/12

Security: Theory

Principals

— Users, programs, sysadmins, ...
Authorization

— Who is permitted to do what?
Authentication

— How do we know who the user is?
Encryption

— Privacy across an insecure network

— Authentication across an insecure network
Auditing

— Record of who changed what, for post-hoc diagnostics

Authorization

* Access control matrix
— For every protected resource, list of who is
permitted to do what
— Example: for each file/directory, a list of
permissions
* Owner, group, world: read, write, execute

« Setuid: program run with permission of principal who
installed it

— Smartphone: list of permissions granted each app

Principle of Least Privilege

Grant each principal the least permission
possible for them to do their assigned work
— Minimize code running inside kernel

— Minimize code running as sysadmin

Practical challenge: hard to know

— what permissions are needed in advance

— what permissions should be granted
 Ex: to smartphone apps
* Ex: to servers

Authorization with Intermediaries

* Trusted computing base: set of software
trusted to enforce security policy
* Servers often need to be trusted

— E.g.: storage server can store/retrieve data,
regardless of which user asks

— Implication: security flaw in server allows attacker
to take control of system

11/28/12

Authentication

* How do we know user is who they say they
are?

e Try #1: user types password
— User needs to remember password!
— Short passwords: easy to remember, easy to guess
— Long passwords: hard to remember

Question

* Where are passwords stored?
— Password is a per-user secret
—Inafile?
* Anyone with sysadmin permission can read file
— Encrypted in a file?
« If gain access to file, can check passwords offline
« If user reuses password, easy to check against other systems
— Encrypted in a file with a random salt?

* Hash password and salt before encryption, foils
precomputed password table lookup

Encryption

Sender Receiver
Plaintext (M) Plaintext (M)

Decrypt
D(C, KP)

* Cryptographer chooses functions E, D and keys KE, KP

— Suppose everything is known (E, D, M and C), should not be
able to determine keys KE, KP and/or modify msg

— provides basis for authentication, privacy and integrity

Ciphertext (C)

Symmetric Key (DES, IDEA)

Plaintext Plaintext

Decrypt with
symmetric key

¢ Single key (symmetric) is shared between parties,
kept secret from everyone else
— Ciphertext = (M)”K; Plaintext = M = ((M)*K)AK
— if K kept secret, then both parties know M is authentic and
secret

Encrypt with
symmetric ke
Ciphertext

11/28/12

Public Key (RSA, PGP)

Plaintext Plaintext

Encrypt with Decrypt with
public key private key

Keys come in pairs: public and private
— Each principal gets its own pair

— Public key can be published; private is secret to
entity

* can’t derive K-private from K-public, even given
M, (M)*K-priv

Secret Ciphertext

Public Key: Authentication

Plaintext Plaintext
Encrypt with Decrypt with

PRIVATE key PUBLIC key

Authentic ciphertext

Keys come in pairs: public and private
— M = ((M)"K-private)*K-public
— Ensures authentication: can only be sent by sender

Public Key: Secrecy

Plaintext Plaintext
Encrypt with Decrypt with
PUBLIC key Private key

Secret ciphertext f

Keys come in pairs: public and private
— M = ((M)"K-public)AK-private
— Ensures secrecy: can only be read by receiver

Encryption Summary

* Symmetric key encryption

— Single key (symmetric) is shared between parties, kept
secret from everyone else

— Ciphertext = (M)*K
* Public Key encryption
— Keys come in pairs, public and private
— Secret: (M)"K-public
— Authentic: (M)”K-private

11/28/12

Two Factor Authentication

Can be difficult for people to remember encryption
keys and passwords

* Instead, store K-private inside a chip

— use challenge-response to authenticate smartcard
— Use PIN to prove user has smartcard

Challenge;

smartcard
response:
/(X/JW/

Public Key -> Session Key

* Public key encryption/decryption is slow; so can use public
key to establish (shared) session key
— assume both sides know each other’s public key

client
((K,y,x+1)AC-public)AS-priv
client
authenticates

server

(y+1)7K
 ‘ server

authenticates
client

Symmetric Key -> Session Key

* In symmetric key systems, how do we gain a
session key with other side?
— infeasible for everyone to share a secret with
everyone else
— solution: “authentication server” (Kerberos)
« everyone shares (a separate) secret with server
« server provides shared session key for A <->B
— everyone trusts authentication server
« if compromise server, can do anything!

Kerberos Example

Server

(A<->B, Kab)"Ksb

11/28/12

* Cryptographic checksum: message integrity

digest

Message Digests (MD5, SHA)

— Typically small compared to message (MD5 128 bits)
— “One-way”: infeasible to find two messages with same

Initial digest ‘ Message (padded)

512 bits | 512 bits |

Message digest

| 512 bits |

Security Practice

¢ In practice, systems are not that secure
— hackers can go after weakest link
* any system with bugs is vulnerable
— vulnerability often not anticipated
« usually not a brute force attack against encryption system
— often can’t tell if system is compromised
* hackers can hide their tracks

— can be hard to resecure systems after a breakin
* hackers can leave unknown backdoors

Tenex Password Attack

* Early system supporting virtual memory
* Kernel login check:
for (i = 0; i < password length; i++) {

if (password[i] != userpwd(i]) return error;
}

return ok

Internet Worm

¢ Used the Internet to infect a large number of
machines in 1988
— password dictionary
— sendmail bug
« default configuration allowed debug access
« well known for several years, but not fixed
— fingerd: finger tom@cs
« fingerd allocated fixed size buffer on stack
« copied string into buffer without checking length

« encode virus into string!

¢ Used infected machines to find/infect others

11/28/12

Ping of Death

IP packets can be fragmented, reordered in flight
Reassembly at host

— can get fragments out of order, so host allocates buffer to
hold fragments

Malformed IP fragment possible

— offset + length > max packet size

— Kernel implementation didn’t check

Was used for denial of service, but could have been
used for virus propagation

Netscape

Used time of day to pick session key

— easy to predict, break

Offered replacement browser code for download
over Web

— four byte change to executable made it use attacker’s key
Buggy helper applications (ex: pdf)

— if web site hosts infected content, can infect clients that
browse to it

Code Red/Nimda/Slammer

Dictionary attack of known vulnerabilities

— known Microsoft web server bugs, email attachments, browser helper
applications, ...

— used infected machines to infect new machines
Code Red:
— designed to cause machines surf to whitehouse.gov simultaneously
Nimda:
— Left open backdoor on infected machines for any use
— Infected ~ 400K machines; approx ~30K still infected
Slammer:
— Single UDP packet on MySQL port
— Infected 100K+ vulnerable machines in under 10 minutes
350K node botnets now common

More Examples

Housekeys

ATM keypad
Automobile backplane
Pacemakers

11/28/12

Thompson Virus

* Ken Thompson self-replicating program

— installed itself silently on every UNIX machine,
including new machines with new instruction
sets

Add backdoor to login.c

* Step 1: modify login.c
A:
if (name == “ken”) {
don’t check password;

login ken as root;

}

* Modification is too obvious; how do we hide
it?

Hiding the change to login.c

¢ Step 2: Modify the C compiler
B:
if see trigger {
insert A into the input stream

}

* Add trigger to login.c
/* gobblygook */
* Now we don’t need to include the code for the
backdoor in login.c, just the trigger

— But still too obvious; how do we hide the modification to
the C compiler?

Hiding the change to the compiler

* Step 3: Modify the compiler
C:
if see trigger2 {
insert B and C into the input stream
}
* Compile the compiler with C present
— now in object code for compiler

* Replace Cin the compiler source with trigger2

10

11/28/12

Compiler compiles the compiler

* Every new version of compiler has code for B,C
included

— as long as trigger2 is not removed

— and compiled with an infected compiler

— if compiler is for a completely new machine: cross-
compiled first on old machine using old compiler

Every new version of login.c has code for A included

— as long as trigger is not removed

— and compiled with an infected compiler

Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
* without reading any input files!
— ex: main() { printf(“main () { printf(“main () ...

Security Lessons

* Hard to resecure a machine after penetration
— how do you know you’ve removed all the backdoors?
* Hard to detect if machine has been penetrated
— Western Digital example
* Any system with bugs is vulnerable

— and all systems have bugs: fingerd, ping of death, Code
Red, nimda, ...

11

