File System Reliability
(part 2)



Main Points

* Approaches to reliability
— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

* Approaches to availability
— RAID



Last Time: File System Reliability

* Transaction concept
— Group of operations
— Atomicity, durability, isolation, consistency

* Achieving atomicity and durability
— Careful ordering of operations
— Copy on write



Reliability Approach #1:
Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be interrupted
safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)



Reliability Approach #2:
Copy on Write File Layout

* To update file system, write a new version of
the file system containing the update

— Never update in place
— Reuse existing unchanged disk blocks

* Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

* Approach taken in network file server
appliances (WAFL, ZFS)



Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Potential for high latency

— Small changes require many writes
— Garbage collection essential for performance



Logging File Systems

* |nstead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log



Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log



Before Transaction Start

Cache Tom = $200 Mike = $100
_
Nonvolatile Tom=$200  Mike=$100
Storage
Log:




After Updates Are Logged

CaChe Tom =5$100 Mike = $200

— —
NOnvolatIIe Tom = $200 Mike = $100
Storage Log: Tom = $100 Mike = $200

—_ I




After Commit Logged

Cache

Nonvolatile
Storage

Tom =$100 Mike = $200

—

—

Tom =$200 Mike =S$100

Log: Tom =$100 Mike = $200 COMMIT

—




Cache

Nonvolatile
Storage

After Copy Back

Tom =$100 Mike = $200

—

—

Tom=S5100 Mike = $200

Log: Tom =$100 Mike = $200 COMMIT

—




After Garbage Collection

CaChe Tom =$100 Mike = $200
— R
Nonvolatile Tom=$100  Mike =$200
Storage
Log:




Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log



Questions

 What happens if machine crashes?
— Before transaction start

— After transaction start, before operations are
logged

— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?



Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log



Redo Log Implementation
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Transaction Isolation

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?



Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit



Transaction Isolation

Process A Process B
Lock x, y Lock x, v, log
move file from x toy grep across x and y
mv x/file y/ grep x/* y/* > log
Commit and release x,y Commit and release x, v,
log

Grep occurs either before
or after move



Serializability

* With two phase locking and redo logging,
transactions appear to occur in a sequential
order (serializability)

— Either: grep then move or move then grep
 Other implementations can also provide
serializability

— Optimistic concurrency control: abort any
transaction that would conflict with serializability



Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model
for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional
model for user data
— Historical artifact (imo)



Question

* Do we need the copy back?
— What if update in place is very expensive?
— Ex: flash storage, RAID



Log Structure

* Logis the data storage; no copy back

— Storage split into contiguous fixed size segments

* Flash: size of erasure block
* Disk: efficient transfer size (e.g., 1IMB)

— Log new blocks into empty segment
e Garbage collect dead blocks to create empty segments

— Each segment contains extra level of indirection
* Which blocks are stored in that segment

* Recovery
— Find last successfully written segment



Reliability vs. Availability

e Storage reliability: data fetched is what you stored
— Transactions, redo logging, etc.

e Storage availability: data is there when you want it
— What if there is a disk failure?

 What if you have more data than fits on a single
disk?

— If failures are independent and data is spread across k
disks, data available ~ Prob(disk working)”*k



RAID

* Replicate data for availability
— RAID 0: no replication
— RAID 1: mirror data across two or more disks

* Google File System replicated all data on three disks,
spread across multiple racks

— RAID 5: split data across disks, with redundancy to
recover from a single disk failure

— RAID 6: RAID 5, with extra redundancy to recover
from two disk failures



RAID 1: Mirroring
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either disk
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Parity

* Parity block:
— Block1 xor block2 xor block3 ...
100011
011011
110001

101001



Stripe O

Stripe 1

Stripe 2
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RAID Update

* Mirroring
— Write every mirror

* RAID-5: one block
— Read old data block
— Read old parity block
— Write new data block

— Write new parity block
e Old data xor old parity xor new data

* RAID-5: entire stripe
— Write data blocks and parity



Non-Recoverable Read Errors

 Disk devices can lose data
— One sector per 10715 bits read
— Causes:

* Physical wear

* Repeated writes to nearby tracks

 What impact does this have on RAID recovery?



Read Errors and RAID recovery

e Example
— 10 1TB disks
— 1 fails
— Read remaining disks to reconstruct missing data

* Probability of recovery =
(1 —10715)7(9 disks * 8 bits * 10712 bytes/disk)
=93%

* Solutions:

— RAID-6 (more redundancy)

— Scrubbing — read disk sectors in background to find
latent errors



