File System Reliability
(part 2)

Main Points

* Approaches to reliability
— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

* Approaches to availability
— RAID

Last Time: File System Reliability

* Transaction concept
— Group of operations
— Atomicity, durability, isolation, consistency

* Achieving atomicity and durability
— Careful ordering of operations
— Copy on write

Reliability Approach #1:
Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be interrupted
safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

Reliability Approach #2:
Copy on Write File Layout

* To update file system, write a new version of
the file system containing the update

— Never update in place
— Reuse existing unchanged disk blocks

* Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

* Approach taken in network file server
appliances (WAFL, ZFS)

Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Potential for high latency

— Small changes require many writes
— Garbage collection essential for performance

Logging File Systems

* |nstead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log

Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Before Transaction Start

Cache Tom = $200 Mike = $100
_
Nonvolatile Tom=$200 Mike=$100
Storage
Log:

After Updates Are Logged

CaChe Tom =5$100 Mike = $200

— —
NOnvolatIIe Tom = $200 Mike = $100
Storage Log: Tom = $100 Mike = $200

—_ I

After Commit Logged

Cache

Nonvolatile
Storage

Tom =$100 Mike = $200

—

—

Tom =$200 Mike =S$100

Log: Tom =$100 Mike = $200 COMMIT

—

Cache

Nonvolatile
Storage

After Copy Back

Tom =$100 Mike = $200

—

—

Tom=S5100 Mike = $200

Log: Tom =$100 Mike = $200 COMMIT

—

After Garbage Collection

CaChe Tom =$100 Mike = $200
— R
Nonvolatile Tom=$100 Mike =$200
Storage
Log:

Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Questions

 What happens if machine crashes?
— Before transaction start

— After transaction start, before operations are
logged

— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?

Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log

Redo Log Implementation

Volatile Memory

) I Pending write—backs
Log—head pointer g >

. Ugpo bgd

Log—tail pointer

\ Persistent Storage
Log-head pointer | - [~ R . !
i / .V \
i i Mixed: i
. | Writeback | WB Complete | Free
ree ' Complete Committed |
| : Uncommitted :
i newer
older Garbage Collected Eligible for GC In Use Available for

New Records

Transaction Isolation

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?

Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Transaction Isolation

Process A Process B
Lock x, y Lock x, v, log
move file from x toy grep across x and y
mv x/file y/ grep x/* y/* > log
Commit and release x,y Commit and release x, v,
log

Grep occurs either before
or after move

Serializability

* With two phase locking and redo logging,
transactions appear to occur in a sequential
order (serializability)

— Either: grep then move or move then grep
 Other implementations can also provide
serializability

— Optimistic concurrency control: abort any
transaction that would conflict with serializability

Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model
for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional
model for user data
— Historical artifact (imo)

Question

* Do we need the copy back?
— What if update in place is very expensive?
— Ex: flash storage, RAID

Log Structure

* Logis the data storage; no copy back

— Storage split into contiguous fixed size segments

* Flash: size of erasure block
* Disk: efficient transfer size (e.g., 1IMB)

— Log new blocks into empty segment
e Garbage collect dead blocks to create empty segments

— Each segment contains extra level of indirection
* Which blocks are stored in that segment

* Recovery
— Find last successfully written segment

Reliability vs. Availability

e Storage reliability: data fetched is what you stored
— Transactions, redo logging, etc.

e Storage availability: data is there when you want it
— What if there is a disk failure?

 What if you have more data than fits on a single
disk?

— If failures are independent and data is spread across k
disks, data available ~ Prob(disk working)”*k

RAID

* Replicate data for availability
— RAID 0: no replication
— RAID 1: mirror data across two or more disks

* Google File System replicated all data on three disks,
spread across multiple racks

— RAID 5: split data across disks, with redundancy to
recover from a single disk failure

— RAID 6: RAID 5, with extra redundancy to recover
from two disk failures

RAID 1: Mirroring

Replicate writes to
pboth disks

Reads can go to
either disk

e —
Disk 0

Data Block O
Data Block 1

Data Block 2
Data Block 3

Data Block 4
Data Block 5

Data Block 6
Data Block 7
Data Block 8
Data Block 9
Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

°

_/

s —
Disk 1

Data Block 0
Data Block 1

Data Block 2

Data Block 3

Data Block 4
Data Block 5

Data Block 6
Data Block 7
Data Block 8
Data Block 9
Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

°

&_/

Parity

* Parity block:
— Block1 xor block2 xor block3 ...
100011
011011
110001

101001

Stripe O

Stripe 1

Stripe 2

e —
Disk 0

Strip (0,0)
Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Strip (0,1)
Data Block 16
Data Block 17
Data Block 18
Data Block 19

Strip (0,2)
Data Block 32
Data Block 33
Data Block 34
Data Block 35

RAID 5

S —
Disk 1

Strip (1,0)
Data Block 0
Data Block 1
Data Block 2
Data Block 3

Strip (1,1)
Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Strip (1,2)
Data Block 36
Data Block 37
Data Block 38
Data Block 39

e ——
Disk 2

Strip (2,0)
Data Block 4
Data Block 5
Data Block 6
Data Block 7

Strip (2,1)
Data Block 20
Data Block 21
Data Block 22
Data Block 23

Strip (2,2)
Parity (0,2,2)
Parity (1,2,2)

)
)

Parity (2,2,2
Parity (3,2,2

S ——
Disk 3

Strip (3,0)
Data Block 8
Data Block 9

Data Block 10
Data Block 11

Strip (3,1)
Data Block 24
Data Block 25
Data Block 26
Data Block 27

Strip (3,2)
Data Block 40
Data Block 41
Data Block 42
Data Block 43

S —
Disk 4

Strip (4,0)
Data Block 12
Data Block 13
Data Block 14
Data Block 15

Strip (4,1)
Data Block 28
Data Block 29
Data Block 30
Data Block 31

Strip (4,2)
Data Block 44
Data Block 45
Data Block 46

Data Block 46

RAID Update

* Mirroring
— Write every mirror

* RAID-5: one block
— Read old data block
— Read old parity block
— Write new data block

— Write new parity block
e Old data xor old parity xor new data

* RAID-5: entire stripe
— Write data blocks and parity

Non-Recoverable Read Errors

 Disk devices can lose data
— One sector per 10715 bits read
— Causes:

* Physical wear

* Repeated writes to nearby tracks

 What impact does this have on RAID recovery?

Read Errors and RAID recovery

e Example
— 10 1TB disks
— 1 fails
— Read remaining disks to reconstruct missing data

* Probability of recovery =
(1 —10715)7(9 disks * 8 bits * 10712 bytes/disk)
=93%

* Solutions:

— RAID-6 (more redundancy)

— Scrubbing — read disk sectors in background to find
latent errors

