File System Reliability

Main Points

* Problem posed by machine/disk failures
* Transaction concept
* Four approaches to reliability

— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)

— Journalling (NTFS, linux ext4)

— Log structure (flash storage)

Last Time: File System Layout

* Tree structure
— Asymmetric: FFS

— Balanced: NTFS

* Disk oriented free space allocation
— Disk block groups

* Files in the same directory near each other

* Metadata near data

— Extents: efficient contiguous allocation

e Late binding on file size

File System Reliability

* What can happen if disk loses power or
machine software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure

Storage Reliability Problem

* Single logical file operation can involve updates to
multiple physical disk blocks

— inode, indirect block, data block, bitmap, ...

— With remapping, single update to physical disk block
can require multiple (even lower level) updates

* At a physical level, operations complete one at a
time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of
when crash occurs?

Transaction Concept

* Transaction is a group of operations

— Atomic: operations appear to happen as a group,
or not at all (at logical level)
* At physical level, only single disk/flash write is atomic

— Durable: operations that complete stay completed
e Future failures do not corrupt previously stored data

— Isolation: other transactions do not see results of
earlier transactions until they are committed

— Consistency: sequential memory model

Reliability Approach #1:
Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be interrupted
safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

FAT: Append Data to File

Add data block . Data Blocks
1

Add pointer to 2 I

data block :

Update file tail to Z

point to new MFT 2 t=¢ file 9 block

entry = SR,

Update access 14

time at head of 16 file T2 block 1

file }g file 9 block 4
20

FAT: Append Data to File

Add data block . Data Blocks
1

Add pointer to 2 I

data block :

Update file tail to Z

point to new MFT 2 t=¢ file 9 block

entry = SR,

Update access 14

time at head of 16 file T2 block 1

file }g file 9 block 4
20

FAT: Append Data to File

Normal operation: Recovery:
* Add data block Scan MFT
* Add pointer to data * If entryis unlinked,
block delete data block
 Update file tail to point ¢ If access time is
to new MFT entry incorrect, update

* Update access time at
head of file

FAT: Create New File

Normal operation:

Allocate data block

Update MFT entry to
point to data block

Update directory with
file name -> file number

— What if directory spans
multiple disk blocks?

Update modify time for
directory

Recovery:

Scan MFT

If any unlinked files (not
in any directory), delete

Scan directories for
missing update times

FFS: Create a File

Normal operation:

* Allocate data block
* Write data block

* Allocate inode

* Write inode block

 Update bitmap of free
blocks

* Update directory with file
name -> file number

 Update modify time for
directory

Recovery:

Scan inode table

If any unlinked files (not
in any directory), delete

Compare free block
bitmap against inode
trees

Scan directories for

missing update/access
times

Time proportional to size of

disk

FFS: Move a File

Normal operation: Recovery:
e Remove filename from ¢ Scan all directories to
old directory determine set of live
e Add filename to new files
directory e Consider files with valid
inodes and not in any
directory
— New file being created?
— File move?

— File deletion?

FFS: Move and Grep

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/*

Will grep always see
contents of file?

Application Level

Normal operation: Recovery:

 Write name of each open ¢ On startup, see if any files
file to app folder were left open

* Write changes to backup * If so, look for backup file
file .

If so, ask user to compare
* Rename backup file to be versions

file (atomic operation
provided by file system)

* Delete list in app folder
on clean shutdown

Careful Ordering

* Pros
— Works with minimal support in the disk drive
— Works for most multi-step operations

* Cons
— Can require time-consuming recovery after a failure

— Difficult to reduce every operation to a safely
interruptible sequence of writes

— Difficult to achieve consistency when multiple
operations occur concurrently

Copy on Write File Layout

* To update file system, write a new version of
the file system cotaining the update

— Never update in place
— Reuse existing unchanged disk blocks
* Seems expensive! But

— Updates can be batched
— Almost all disk writes can occur in parallel

Copy on Write/Write Anywhere

Root Inode Inode File’s Inode Array Indirect Data
Slots Indirect Blocks (in Inode File) Blocks Blocks
E { =]
H]
m]
—]
= A
H]
H]
| N]
.

Fixed
Location

Anywhere

Copy on Write/Write Anywhere

Root Inode
Slots

Inode File's
Indirect Blocks

:

o]
g -

Inode Array Indirect Data
(in Inode File) Blocks Blocks
|| o]

Y

]]

»
'E

%@
B

Update Last
Block of File

Copy on Write Batch Update

Root
Inode

New /
Root //
Inode /,

\

Root
Inode’s
Indirect

Inode

Blocks

AN

New

Indirect
Nodes of
Inode
File , 7

New

/ Data
Block of

/}

\ Inode
\
\Flle

File's File's
Indirect Data
Blocks Blocks
7 \
Y ’ New
Indirect
N()dﬁ‘ /vv
[_
»

\

A
M

/N

New
Data
Blocks

FFS Update in Place

Update Inode

New Data Block

Update Indirect Block

Update Bitmap

Copy on Write Write Location

Old Inode

New Data Block
Update Indirect Block
Update Inode

Update Bitmap

Old Indirect Block

Old Bitmap

Copy on Write Garbage Collection

* For write efficiency, want contiguous
sequences of free blocks

— Spread across all block groups

— Updates leave dead blocks scattered

* For read efficiency, want data read together to
be in the same block group

— Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Potential for high latency

— Small changes require many writes
— Garbage collection essential for performance

Logging File Systems

* |nstead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log

Redo Logging

Prepare
— Write all changes (in transaction) to log

Commit
— Single disk write to make transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

Redo Logging

* Recovery
— Read log
— Redo any operations for committed transactions
— Garbage collect log

Before Transaction Start

Cache Tom = $200 Mike = $100
_
Nonvolatile Tom=$200 Mike=$100
Storage
Log:

After Updates Are Logged

CaChe Tom =5$100 Mike = $200

— —
NOnvolatIIe Tom = $200 Mike = $100
Storage Log: Tom = $100 Mike = $200

—_ I

After Commit Logged

Cache

Nonvolatile
Storage

Tom =$100 Mike = $200

—

—

Tom =$200 Mike =S$100

Log: Tom =$100 Mike = $200 COMMIT

—

Cache

Nonvolatile
Storage

After Copy Back

Tom =$100 Mike = $200

—

—

Tom=S5100 Mike = $200

Log: Tom =$100 Mike = $200 COMMIT

—

After Garbage Collection

CaChe Tom =$100 Mike = $200
— R
Nonvolatile Tom=$100 Mike =$200
Storage
Log:

Question

 What happens if machine crashes?
— Before transaction start
— After transaction start, before operations are logged
— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?

— Write back is idempotent — redo can be redone

Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log

Log—head pointer

Volatile Memory

Pending write—backs

. Upoo g4

Log—tail pointer

\ Persistent Storage
Log—head pointer . . . '
Log: : K !
= .v .V V.
i i Mixed: i
Free | Writeback ! WB Complete ! Free
| Complete | Committed |
| : Uncommitted :
i newer
Older 5 arbage Collected Eligible for GC In Use Available for

New Records

Redo Log Implementation

Volatile Memory

) I Pending write—backs
Log—head pointer g >

. Ugpo bgd

Log—tail pointer

\ Persistent Storage
Log-head pointer | - [~ R . !
i / .V \
i i Mixed: i
. | Writeback | WB Complete | Free
ree ' Complete Committed |
| : Uncommitted :
i newer
older Garbage Collected Eligible for GC In Use Available for

New Records

Transaction Isolation

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?

Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Transaction Isolation

Process A

Lock x, y

move file from xtoy
mv x/file y/
Commit and release x,y

Process B

Lock x, vy, log

grep across x and y
grep x/* y/* > log
Commit and release x, y, log

What if grep starts after
changes are logged, but
before commit?

Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model
for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional
model for user data
— Historical artifact (imo)

Log Structure

* Can we eliminate the copy back?

