File System Reliability



Main Points

* Problem posed by machine/disk failures
* Transaction concept
* Four approaches to reliability

— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)

— Journalling (NTFS, linux ext4)

— Log structure (flash storage)



Last Time: File System Layout

* Tree structure
— Asymmetric: FFS

— Balanced: NTFS

* Disk oriented free space allocation
— Disk block groups

* Files in the same directory near each other

* Metadata near data

— Extents: efficient contiguous allocation

e Late binding on file size



File System Reliability

* What can happen if disk loses power or
machine software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure



Storage Reliability Problem

* Single logical file operation can involve updates to
multiple physical disk blocks

— inode, indirect block, data block, bitmap, ...

— With remapping, single update to physical disk block
can require multiple (even lower level) updates

* At a physical level, operations complete one at a
time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of
when crash occurs?



Transaction Concept

* Transaction is a group of operations

— Atomic: operations appear to happen as a group,
or not at all (at logical level)
* At physical level, only single disk/flash write is atomic

— Durable: operations that complete stay completed
e Future failures do not corrupt previously stored data

— Isolation: other transactions do not see results of
earlier transactions until they are committed

— Consistency: sequential memory model



Reliability Approach #1:
Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be interrupted
safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)
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FAT: Append Data to File

Normal operation: Recovery:
* Add data block  Scan MFT
* Add pointer to data * If entryis unlinked,
block delete data block
 Update file tail to point ¢ If access time is
to new MFT entry incorrect, update

* Update access time at
head of file



FAT: Create New File

Normal operation:

Allocate data block

Update MFT entry to
point to data block

Update directory with
file name -> file number

— What if directory spans
multiple disk blocks?

Update modify time for
directory

Recovery:

Scan MFT

If any unlinked files (not
in any directory), delete

Scan directories for
missing update times



FFS: Create a File

Normal operation:

* Allocate data block
* Write data block

* Allocate inode

* Write inode block

 Update bitmap of free
blocks

* Update directory with file
name -> file number

 Update modify time for
directory

Recovery:

Scan inode table

If any unlinked files (not
in any directory), delete

Compare free block
bitmap against inode
trees

Scan directories for

missing update/access
times

Time proportional to size of

disk



FFS: Move a File

Normal operation: Recovery:
e Remove filename from ¢ Scan all directories to
old directory determine set of live
e Add filename to new files
directory e Consider files with valid
inodes and not in any
directory
— New file being created?
— File move?

— File deletion?



FFS: Move and Grep

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/*

Will grep always see
contents of file?



Application Level

Normal operation: Recovery:

 Write name of each open ¢ On startup, see if any files
file to app folder were left open

* Write changes to backup * If so, look for backup file
file .

If so, ask user to compare
* Rename backup file to be versions

file (atomic operation
provided by file system)

* Delete list in app folder
on clean shutdown



Careful Ordering

* Pros
— Works with minimal support in the disk drive
— Works for most multi-step operations

* Cons
— Can require time-consuming recovery after a failure

— Difficult to reduce every operation to a safely
interruptible sequence of writes

— Difficult to achieve consistency when multiple
operations occur concurrently



Copy on Write File Layout

* To update file system, write a new version of
the file system cotaining the update

— Never update in place
— Reuse existing unchanged disk blocks
* Seems expensive! But

— Updates can be batched
— Almost all disk writes can occur in parallel



Copy on Write/Write Anywhere
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Copy on Write/Write Anywhere
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Copy on Write Batch Update
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FFS Update in Place
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Copy on Write Write Location
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Copy on Write Garbage Collection

* For write efficiency, want contiguous
sequences of free blocks

— Spread across all block groups

— Updates leave dead blocks scattered

* For read efficiency, want data read together to
be in the same block group

— Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks



Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Potential for high latency

— Small changes require many writes
— Garbage collection essential for performance



Logging File Systems

* |nstead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log



Redo Logging

Prepare
— Write all changes (in transaction) to log

Commit
— Single disk write to make transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log



Redo Logging

* Recovery
— Read log
— Redo any operations for committed transactions
— Garbage collect log



Before Transaction Start
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After Updates Are Logged
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After Commit Logged
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After Garbage Collection
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Question

 What happens if machine crashes?
— Before transaction start
— After transaction start, before operations are logged
— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?

— Write back is idempotent — redo can be redone



Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log
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Redo Log Implementation
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Transaction Isolation

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?



Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit



Transaction Isolation

Process A

Lock x, y

move file from xtoy
mv x/file y/
Commit and release x,y

Process B

Lock x, vy, log

grep across x and y
grep x/* y/* > log
Commit and release x, y, log

What if grep starts after
changes are logged, but
before commit?



Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model
for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional
model for user data
— Historical artifact (imo)



Log Structure

* Can we eliminate the copy back?



