11/19/12

File System Reliability

Main Points

* Problem posed by machine/disk failures
* Transaction concept
* Four approaches to reliability
— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

Last Time: File System Layout

¢ Tree structure
— Asymmetric: FFS
— Balanced: NTFS

* Disk oriented free space allocation
— Disk block groups

* Files in the same directory near each other
* Metadata near data

— Extents: efficient contiguous allocation
* Late binding on file size

File System Reliability

* What can happen if disk loses power or
machine software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete
File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure

11/19/12

Storage Reliability Problem

* Single logical file operation can involve updates to
multiple physical disk blocks
— inode, indirect block, data block, bitmap, ...
— With remapping, single update to physical disk block

can require multiple (even lower level) updates

* At a physical level, operations complete one at a
time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of
when crash occurs?

Transaction Concept

* Transaction is a group of operations
— Atomic: operations appear to happen as a group,
or not at all (at logical level)
* At physical level, only single disk/flash write is atomic
— Durable: operations that complete stay completed
* Future failures do not corrupt previously stored data
— Isolation: other transactions do not see results of
earlier transactions until they are committed
— Consistency: sequential memory model

Reliability Approach #1:
Careful Ordering

* Sequence operations in a specific order
— Careful design to allow sequence to be interrupted
safely
* Post-crash recovery
— Read data structures to see if there were any
operations in progress
— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

FAT: Append Data to File

« Add datablock o Data Blocks
1
* Add pointer to i —
data block .
* Update file tail to Z:
point to new MFT 3 Eﬁ flesblockd
entry E — Pl ks
* Update access 1 :]
time athead of 191 fle 12 block
ﬁle }g E file 9 block 4
20|

11/19/12

FAT: Append Data to File

Add data block

Add pointer to
data block
Update file tail to
point to new MFT
entry

Update access

time at head of
file

SVPVONBWN—OVRNAUNRWN=O

[N

=
=
I

AT4]

Data Blocks

file 9 block 3

1=
0]
Iololo
o
a3
=

file 72 block 0

file 72 block 1

file 9 block 4

FAT: Append Data to File

Normal operation:

* Add data block

¢ Add pointer to data
block

* Update file tail to point
to new MFT entry

¢ Update access time at
head of file

Recovery:

¢ Scan MFT

* If entry is unlinked,
delete data block

* If access time is
incorrect, update

FAT: Create New File

Normal operation:

Allocate data block
Update MFT entry to
point to data block
Update directory with
file name -> file number

— What if directory spans
multiple disk blocks?

Update modify time for
directory

Recovery:

Scan MFT

If any unlinked files (not
in any directory), delete
Scan directories for
missing update times

FFS: Create a File

Normal operation:

* Allocate data block

* Write data block

* Allocate inode

* Write inode block

* Update bitmap of free
blocks

* Update directory with file
name -> file number

¢ Update modify time for
directory

Recovery:

* Scaninode table

« If any unlinked files (not
in any directory), delete

* Compare free block
bitmap against inode
trees

* Scan directories for
missing update/access
times

Time proportional to size of
disk

11/19/12

FFS: Move a File

Normal operation: Recovery:
* Remove filename from * Scan all directories to
old directory determine set of live
* Add filename to new files
directory ¢ Consider files with valid
inodes and not in any
directory
— New file being created?
— File move?
— File deletion?

FFS: Move and Grep

Process A Process B

move file from x to y grep across x and y
mv x/file y/ grep x/* y/*

Will grep always see
contents of file?

Application Level

Normal operation: Recovery:
* Write name of each open * On startup, see if any files
file to app folder were left open
* Write changes to backup * If so, look for backup file
file * If so, ask user to compare
* Rename backup file to be versions
file (atomic operation
provided by file system)
* Delete list in app folder
on clean shutdown

Careful Ordering

Pros

— Works with minimal support in the disk drive

— Works for most multi-step operations

Cons

— Can require time-consuming recovery after a failure

— Difficult to reduce every operation to a safely
interruptible sequence of writes

— Difficult to achieve consistency when multiple
operations occur concurrently

11/19/12

Copy on Write File Layout

* To update file system, write a new version of
the file system cotaining the update
— Never update in place
— Reuse existing unchanged disk blocks
* Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

Copy on Write/Write Anywhere

Root Inode Inode Files Inode Array Indirect Data
Slots Indirect Blocks (in Inode File) Blocks Blocks
— —
l/—|> n D
] L]
:ﬁ]
Fixed i Anywhere
Location |

Copy on Write/Write Anywhere

Root Inode Inode File’s Inode Array Indirect Data
Slots Indirect Blocks (in Inode File) Blocks Blocks
= -
Lt []
=]
J
O Update Last
Block of File

Copy on Write Batch Update

Root Root Inode File's File's
Inode Inode’s File Indirect Data
Indirect Blocks Blocks

11/19/12

FFS Update in Place

[] Update Inode

[New Data Block

[] Update Indirect Block

[] Update Bitmap

Copy on Write Write Location

[]old Inode
New Data Block
Update Indirect Block
Update Inode
Update Bitmap

[]old Indirect Block

[]old Bitmap

Copy on Write Garbage Collection

* For write efficiency, want contiguous
sequences of free blocks

— Spread across all block groups

— Updates leave dead blocks scattered

For read efficiency, want data read together to
be in the same block group

— Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

Copy On Write

* Pros

— Correct behavior regardless of failures

— Fast recovery (root block array)

— High throughput (best if updates are batched)
* Cons

— Potential for high latency

— Small changes require many writes

— Garbage collection essential for performance

11/19/12

Logging File Systems

¢ Instead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log

Redo Logging

* Prepare
— Write all changes (in transaction) to log
* Commit
— Single disk write to make transaction durable
* Redo
— Copy changes to disk
* Garbage collection
— Reclaim space in log

Redo Logging

* Recovery
— Read log

— Redo any operations for committed transactions
— Garbage collect log

Before Transaction Start

Cache Tom =$200 Mike = $100
NonVO|ati|e Tom = $200 Mike = $100
Storage

11/19/12

After Updates Are Logged

After Commit Logged

Cache Tom=$§100 Mike =$200 Cache Tom=$§100 Mike =$200
Nonvolatlle Tom = $200 Mike = $100 NOHVOlatlle Tom = $200 Mike = $100
Storage ‘ Log: Tom = $100 Mike = $200 Storage ‘ Log: Tom = $100 Mike = $200 COMMIT

After Copy Back After Garbage Collection
Cache Tom=$§100 Mike =$200 Cache Tom=$§100 Mike =$200
Nonvolatlle Tom =$100 Mike = $200 NOHVOlatlle Tom = $100 Mike = $200
Storage Storage

‘ Log: Tom = $100 Mike = $200 COMMIT

-
I ——

S

‘ Log:

-
I ——

_

11/19/12

Question

* What happens if machine crashes?
— Before transaction start
— After transaction start, before operations are logged
— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection
* What happens if machine crashes during
recovery?
— Write back is idempotent — redo can be redone

Performance

Log written sequentially

— Often kept in flash storage

Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

Can process multiple transactions

— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log

Volatile Memory

Pending write—backs
Log-head pointer [~ ™™~ 0O E‘"gD“"mDE‘D ; Log~tail pointer

Redo Log Implementation

Persistent Storage

Log-head pointer |~~~

Log

y ¥
H : Mixed:
. Writeback | WB Complete .
ree Complete | Committed e
Uncommitted
il newer
Older G rbage Collected Eligible for GC In Use Available for

New Records

Volatile Memory

Log-head pointer | -] ™~ DPE"E‘WSSSD] Log-tail pointer

Persistent Storage

Log-head pointer |~~~

Log

¥ y Y
' ; Mixed: :
Free Writeback | WB Complete Free
Complete | Committed
Uncommitted
s newer
Ol hage Collected Eligible for GC In Use Available for

New Records

11/19/12

Transaction Isolation
Process A Process B

move file from x to y
mv x/file y/

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?

Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Transaction Isolation

Process A Process B

Lock x, y Lock x, y, log

move file from x to y grep across x and y
mv x/file y/ grep x/* y/* > log

Commit and release x,y Commit and release x, y, log

What if grep starts after
changes are logged, but
before commit?

Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model

for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional

model for user data
— Historical artifact (imo)

10

11/19/12

Log Structure

* Can we eliminate the copy back?

11

