9/25/12

The Kernel Abstraction

Admin

* Pintos assignment 1
— Code walk through in section

* Four slip days (for Pintos assignments, not
problem sets)

— Everything must be turned in 5pm, day before
final

* Hack weeks

— No class in week 8 and week 11, when Pintos 3 + 4
are due

Challenge: Protection

* How do we execute code with restricted
privileges?

— Either because the code is buggy or if it might be
malicious
* Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested
yet

Main Points

* Process concept
— A process is an OS abstraction for executing a
program with limited privileges
* Dual-mode operation: user vs. kernel
— Kernel-mode: execute with complete privileges
— User-mode: execute with fewer privileges
* Safe control transfer

— How do we switch from one mode to the other?

9/25/12

Process Concept

edits compiler executable
\ | source o | image

code 7 |instructions

and
data

Mrating System
Copy

Data |Heap|Stack ~ machine
instructions,

machine

) : Data |Heap|Stack;
instructions

Process Operating System Kernel

Physical Memory

Process Concept

* Process: an instance of a program, running
with limited rights

— Process control block: the data structure the OS
uses to keep track of a process

— Two parts to a process:

* Thread: a sequence of instructions within a process
— Potentially many threads per process (for now 1:1)
— Thread aka lightweight process

* Address space: set of rights of a process
— Memory that the process can access

— Other permissions the process has (e.g., which procedure calls
it can make, what files it can access)

Thought Experiment

* How can we implement execution with limited
privilege?
— Execute each program instruction in a simulator

— If the instruction is permitted, do the instruction
— Otherwise, stop the process

— Basic model in Javascript, ...
* How do we go faster?

— Run the unprivileged code directly on the CPU?

Hardware Support:
Dual-Mode Operation
* Kernel mode

— Execution with the full privileges of the hardware

— Read/write to any memory, access any 1/0 device,
read/write any disk sector, send/read any packet
* User mode

— Limited privileges
— Only those granted by the operating system kernel
* On the x86, mode stored in EFLAGS register

9/25/12

A Model of a CPU A CPU with Dual-Mode Operation
Branch Address Branch Address
J e cPU
select | NewpC | Progam| | 1 L
Counter 1 Fetch
Bee | S ——
opcode opcode
Hardware Support:
. Privileged instructions
Dual-Mode Operation &
Privileged instructions * Examples?

— Available to kernel
— Not available to user code
Limits on memory accesses

— To prevent user code from overwriting the kernel
* What should happen if a user program

Timer
attempts to execute a privileged instruction?

— To regain control from a user program in a loop
Safe way to switch from user mode to kernel
mode, and vice versa

9/25/12

Memory Protection

Physical Memory

INSTR

DATA

HEAP

STACK

Memory

Reference 7

Exception

Yes
Continue

No

Towards Virtual Addresses

* Problems with base and bounds?

Virtual Address

Processor|

Virtual Addresses

Translation Box

raise exception

Physical Address

Instruction fetch or data read/write (untranslated)

Physical
Memory

Virtual Addresses

Virtual Addresses
(Process Layout)

CODE DATA HEAP STACK

CODE DATA HEAP | STACK

Physical Memory

9/25/12

Example: Corrected
(Why doesn’t this work?)

int staticVar = 0; /* a static variable x/
main() {

int localVar = 0; /* a procedure local variable x/

staticVar += 1;

localVar += 1;

sleep(10); /* this causes the program to wait for 10 seconds */

printf (‘‘static address: %x, value: %d\n’’, &staticVar, staticVar);

printf (‘‘procedure local address: %x, value: %d\n’’, &localVar, localVar);
}

> static address: 5328, value: 1
> procedure local address: ffffffe2, value: 1

Hardware Timer

* Hardware device that periodically interrupts

the processor

— Returns control to the kernel timer interrupt
handler

— Interrupt frequency set by the kernel

— Can be temporarily deferred (by a privileged
instruction!)

* Crucial for implementing mutual exclusion

— Pintos assignment 1: generalize hardware timer to
a software timer

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory. Why must
the screen’s buffer memory be protected?

Question

* For each of the three mechanisms for
supporting dual mode operation — privileged
instructions, memory protection, and timer
interrupts — explain what might go wrong
without that mechanism, assuming the system
still had the other two.

9/25/12

Question

* Suppose we had a perfect object-oriented
language and compiler, so that only an
object’s methods could access the internal
data inside an object. If the operating system
only ran programs written in that language,
would it still need hardware memory address
protection?

Safe Mode Switch

* From user-mode to kernel
— Interrupts
« Triggered by timer and 1/0 devices
— Exceptions
« Triggered by unexpected program behavior
— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

* Only limited # of very carefully coded entry points

Safe Mode Switch

* From kernel-mode to user

— New process start
* Jump to first instruction in program

— Return from interrupt, exception, system call
* Resume suspended execution

— Process/thread context switch
* Resume some other process

— User-level upcall
* Asynchronous notification to user program

Mode Switch Requirements

¢ Limited number of kernel entry points

— Each must be protected against malicious or buggy
behavior by user programs
¢ Atomic transfer
— Single instruction to change:
* Program counter
« Stack pointer
* Memory protection
* Kernel/user mode
* Transparent restartable execution

— User program does not know timer interrupt occurred

Costs of Dual-Mode Operation

Server

4. parse request

9. format repl

1. network’ 10. network 5.file
socket 3. kernel socket read 8. kernel
read copy write copy
Kemel \L ‘ J/
11. kernel copy
from user buffer
into network buffer
12. format outgoing 6. disk
2. copy arriving 7.disk
packet (DMA) packet and DMA request data (DMA)
S

Network Interface

Disk Interface

9/25/12

