11/16/12

Storage Systems
(part 2)

File System Interface

* UNIX file open is a Swiss Army knife:
— Open the file, return file descriptor
— Options:
« if file doesn’t exist, return an error
« If file doesn’t exist, create file and open it
« If file does exist, return an error
« If file does exist, open file
« If file exists but isn’t empty, nix it then open
« If file exists but isn’t empty, return an error

Interface Design Question

* Why not separate syscalls for open/create/
exists?
— Would be more modular!

if (!exists(name))
create(name); // can create fail?
fd = open(name); // does the file exist?

Main Points

* Storage hardware

— Disk scheduling

— Flash memory
* File system usage patterns
* File system design

11/16/12

Arm Assembly

Disk Performance

Disk Latency =

Seek Time + Rotation Time + Transfer Time

Toshiba Disk (2008)

Size

Platters/Heads

Capacity

Performance

Spindle speed

Average seek time read/write
Maximum seek time
Track-to-track seek time
Transfer rate (surface to buffer)
Transfer rate (buffer to host)
Buffer memory

Power

Typical

Idle

2/4
320 GB

7200 RPM

10.5 ms/ 12.0 ms
19 ms

1ms

54-128 MB/s
375 MB/s

16 MB

16.35 W
11.68 W

Q&A

* How long to complete 500 random disk reads, in
FIFO order?

— 14 ms/read (avg seek + % rotation)
— 70 random 512 byte reads/second

* How long to complete 500 sequential disk reads?

— 16 ms/500 reads (avg seek + % rotation + transfer)
— 60 random 250KB reads/second

* How large a transfer is needed to achieve 80% of

the max disk transfer rate?
— 10 MB

11/16/12

Disk Scheduling Disk Scheduling

* CSCAN: move disk
armin one
direction, until all
requests satisfied,
then start again
from farthest
request

* SCAN: move disk
armin one
direction, until all
requests satisfied,
then reverse
direction

Disk Scheduling Question

* R-CSCAN: CSCAN
but take into
account that short
track switch is <
rotational delay

* How long to complete 500 random disk reads,
in any order?

11/16/12

Question

in any order?

— Disk seek: 1ms (most will be short)
— Rotation: 4.15ms

— Transfer: 5-10usec

* Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
— Would be a bit shorter with R-CSCAN
—vs. 7.3 seconds if FIFO order

How long to complete 500 random disk reads,

Question

* How long to read all of the bytes off of a disk?

Question

* How long to read all of the bytes off of a disk?
— Disk capacity: 320GB
— Disk bandwidth: 54-128MB/s

* Transfer time =

Disk capacity / average disk bandwidth
~ 3500 seconds (1 hour)

Flash Memory

Source Control Drain
Control®
Gate
b b
Source Drain

11/16/12

Flash Memory

* Writes must be to “clean” cells; no update in
place
— Large block erasure required before write
— Erasure block: 128 =512 KB
— Erasure time: Several milliseconds
* Write/read page (2-4KB)
—50-100 usec

Flash Drive (2011)

Size

Capacity 300 GB
Page Size 4KB
Performance

Bandwidth (Sequential Reads) 270 MB/s

Bandwidth (Sequential Writes) 210 MB/s

Read/Write Latency 75 us

Random Reads Per Second 38,500

Random Writes Per Second 2,000 (2,400 with 20% space reserve)

Interface SATA 3 Gb/s

Endurance

Endurance 1.1 PB (1.5 PB with 20% space reserve)
Power

Power Consumption Active/ldle 3.7 W /0.7 W

Question

* Why are random writes so slow?
— Random write: 2000/sec
— Random read: 38500/sec

Flash Translation Layer

* Flash device firmware maps logical page #to a
physical location
— Move live pages as needed for erasure

* Garbage collect empty erasure block by copying live
pages to new location

— Wear-levelling

* Can only write each physical page a limited number of
times

— Avoid pages that no longer work

* Transparent to the device user

11/16/12

File System — Flash

* How does Flash device know which blocks are
live?
— Live blocks must be remapped to a new location
during erasure
* TRIM command

— File system tells device when pages are no longer
in use

File System Workload

* File sizes
— Are most files small or large?

— Which accounts for more total storage: small or
large files?

File System Workload

* File sizes
— Are most files small or large?
* SMALL
— Which accounts for more total storage: small or
large files?
* LARGE

File System Workload

* File access
— Are most accesses to small or large files?

— Which accounts for more total I/0 bytes: small or
large files?

11/16/12

File System Workload

* File access

— Are most accesses to small or large files?
* SMALL

large files?
* LARGE

— Which accounts for more total I/0 bytes: small or

File System Workload

* How are files used?
— Most files are read/written sequentially
— Some files are read/written randomly
 Ex: database files, swap files
— Some files have a pre-defined size at creation
— Some files start small and grow over time
* Ex: program stdout, system logs

File System Design

* For small files:
— Small blocks for storage efficiency
— Concurrent ops more efficient than sequential
— Files used together should be stored together
* For large files:
— Storage efficient (large blocks)
— Contiguous allocation for sequential access
— Efficient lookup for random access
* May not know at file creation
— Whether file will become small or large
— Whether file is persistent or temporary
— Whether file will be used sequentially or randomly

File System Design

* Data structures
— Directories: file name -> file metadata
« Store directories as files
— File metadata: how to find file data blocks
— Free map: list of free disk blocks
* How do we organize these data structures?
— Device has non-uniform performance

11/16/12

Design Challenges

File System Design Options

Index structure FAT FFS NTFS
— How do we locate the blocks of a file? Index Linked list Tree Tree
Index granularity structure (fixed, assym) | (dynamic)
— What block size do we use? granularity block block extent
Free space free space FAT array Bitmap Bitmap
— How do we find unused blocks on disk? allocation (fixed (file)
Locality location)
— How do we preserve spatial locality? Locality | defragmentation | Block groups Extents
Reliability + reserve Best fit
— What if machine crashes in middle of a file system op? space defrag
Microsoft File Allocation Table (FAT) FAT
MFT Data Blocks
0[]
Linked list index structure 1
— Simple, easy to implement H — file 9 block 3
. . . 50 |
— Still widely used (e.g., thumb drives) g —
File table: 8[|
.) 9 = file 9 block 0
— Linear map of all blocks on disk 10 [file 9 block 1
. . . 1= file 9 block 2
— Each file a linked list of blocks 1% [file 12 block 0
14 :]
15 |
19 [| file 12 block 1
18 [file 9 block 4
19 |
20 [|

11/16/12

FAT Berkeley FFS (Fast File System)

* Pros: * File metadata: inode table
— Easy to find free block

— Easy to append to a file
— Easy to delete a file

— similar to FAT table, except only for metadata

* File data: Assymetric tree

« Cons: — Small files: shallow tree
— Random access is very slow — Large files: deep tree
— Fragmentation — Efficient storage for small files

* File blocks for a given file may be scattered
* Files in the same directory may be scattered
* Problem becomes worse as disk fills

— Efficient lookup for random access in large files

. Inode Arra Triple Double
FFS |n0de 1 ’ IndiF:ect Indirect Indirect Data
| Inode Blocks Blocks Blocks Block
* Metadata] Fle”
— File owner, access permissions, access times, ... 1 Metadata /D
* Set of 12 data pointers — /1:|
— With 4KB blocks => max size of 48KB files —
* Indirect block pointer] oirect 1 —
— pointer to disk block of data pointers] Pointers O
— 4KB block size => 1K data blocks => 4MB file - — [—
* Doubly indirect block pointer — .
4G e ° i B D\é'ié
. 1 Tripl. Indrect Ptr.

I

11/16/12

FFS Locality

File metadata spread throughout disk

— Locate file metadata near file blocks

First fit allocation

— Small files fragmented, large files contiguous
Block group allocation

— Files in same directory located in nearby tracks

10

