11/4/12

Advanced Memory Management
Introduction to File Systems

Last Time

* Cache Replacement Policies
— FIFO, MIN, LRU, LFU, Clock

* Memory-mapped files
* Demand-paged virtual memory

Main Points

* Applications of memory management
— What can we do with ability to trap on memory
references to individual pages?
* File systems and persistent storage
— Goals
— Abstractions
— Interfaces

Address Translation Uses

* Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

* Efficient interprocess communication

— Shared regions of memory between processes
* Shared code segments

— E.g., common libraries used by many different programs
* Program initialization

— Start running a program before it is entirely in memory
* Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand

11/4/12

Address Translation (more)

Program debugging

— Data breakpoints when address is accessed
Zero-copy I/O

— Directly from 1/0 device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— Illusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpoint/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally
Distributed shared memory

— lllusion of memory that is shared between machines

Virtual Machines and Virtual Memory

Guest Virtual
Addresses

Guest Physical
Addresses

Host Physical

Guest Page Host Page Addresses

Tables Tables

>
(ES

Segment Table Page Table A Page Table B
0 Page Table A 0 0002 0 0001
1 Page Table B 1 0006 1 0004
X (restinvalid) 2 0000 2 0003
3 0005 X (restinvalid)
X (restinvalid)
Segment Table Page Table K
0 Page Table K 0 BEEF
x (restinvalid) 1 F000
2 CAFE
3 3333
4 (invalid)
5 BA11
6 DEAD
7 5555

x (restinvalid)

11/4/12

Shadow Page Tables

Guest Virtual Guest Physical Host Physical
Addresses Guest Page Addresses Host Page Addresses

Tables Tables

>

Shadow Page
Tables

Hardware Support for
Virtual Machines
* x86 recently added hardware support for
running virtual machines at user level

* Operating system kernel initializes two sets of
translation tables
— One for the guest OS
— One for the host OS

* Hardware translates address in two steps

— First using guest OS tables, then host OS tables
— TLB holds composition

VMM Memory Compression

Guest Physical Host Page Host Physical
Guest Process Guest Page
on VM #1 Tables Addresses, VM #1 Tables Addresses
@ 5 > | page A
Guest Physical

Guest Process

age B
Addresses, VM #2 > pag
on VM #2

2

2

D_/>

delta relative
to page A

Transparent Checkpoint

checkpoint restart
(process copy) (process copy)
process process
execute X
instructions
failure
time

11/4/12

Question

* At what point can we resume the execution of
a checkpointed program?

— When the checkpoint starts?
— When the checkpoint is entirely on disk?

Incremental Checkpoint

Memory Incremental Incremental Memory
Checkpoint Checkpoint Checkpoint Checkpoint
A A
B [+] P
: a1 |«

o | [o
E ;

Deterministic Debugging

* Can we precisely replay the execution of a
multi-threaded process?

— If process does not have a memory race

* From a checkpoint, record:
— All inputs and return values from system calls
— All scheduling decisions

— All synchronization operations
* Ex: which thread acquired lock in which order

Process Migration

* What if we checkpoint a process and then
restart it on a different machine?
— Process migration: move a process from one
machine to another

— Special handling needed if any system calls are in
progress

* Where does the system call return to?

11/4/12

Cooperative Caching

* Can we demand page to memory on a
different machine?
— Remote memory over LAN much faster than disk

— On page fault, look in remote memory first before
fetching from disk

Distributed Virtual Memory

* Can we make a network of computers appear to be a
shared-memory multiprocessor?
— Read-write: if page is cached only on one machine
— Read-only: if page is cached on several machines
— Invalid: if page is cached read-write on a different machine
* On read page fault:
— Change remote copy to read-only
— Copy remote version to local machine
* On write page fault (if cached):
— Change remote copy to invalid
— Change local copy to read-write

Recoverable Virtual Memory

» Data structures that survive failures
— Want a consistent version of the data structure

— User marks region of code as needing to be atomic
* Begin transaction, end transaction

— If crash, restore state before or after transaction

Recoverable Virtual Memory

* On begin transaction:
— Snapshot data structure to disk
— Change page table permission to read-only
* On page fault:
— Mark page as modified by transaction
— Change page table permission to read-write
* On end transaction:
— Log changed pages to disk
— Commit transaction when all mods are on disk
* Recovery:

— Read last snapshot + logged changes, if committed

11/4/12

File Systems

* Abstraction on top of persistent storage
— Magnetic disk
— Flash memory (e.g., USB thumb drive)
* Devices provide
— Storage that (usually) survives across machine crashes
— Block level (random) access
— Large capacity at low cost
— Relatively slow performance

* Magnetic disk read takes 10-20M processor instructions

File System as lllusionist:
Hide Limitations of Physical Storage

Persistence of data stored in file system:
— Even if crash happens during an update

— Even if disk block becomes corrupted

— Even if flash memory wears out

Naming:

— Named data instead of disk block numbers
— Directories instead of flat storage

— Byte addressable data even though devices are block-
oriented

Performance:

— Cached data

— Data placement and data structure organization
Controlled access to shared data

File System Abstraction

* File system: persistent, named data
* File: named collection of data in file system
— UNIX: linear sequence of bytes

— Windows/MacOS: collection of linear sequences

* Example: a Word file might contain text, pictures,
spreadsheets, formatting templates, ...

* File consists of
— Metadata
 Access permissions, creation date
— Data
* File contents

File System Abstraction

Directory

— Group of named files or subdirectories

— Mapping from file name to file metadata location
Path

— String that uniquely identifies file or directory

— Ex: /cse/www/education/courses/cse451/12au
Links

— Hard link: link from name to metadata location

— Soft link: link from name to alternate name
Mount

— Mapping from name in one file system to root of another

11/4/12

UNIX File System API

* create, link, unlink, createdir, rmdir
— Create file, link to file, remove link
— Create directory, remove directory

* open, close, read, write, seek
— Open/close a file for reading/writing
— Seek resets current position

* fsync
— File modifications can be cached

— fsync forces modifications to disk (like a memory
barrier)

