Caching and Virtual Memory



Last Time

* Cache concept
— Hardware vs. software caches

 When caches work and when they don’t
— Spatial/temporal locality vs. Zipf workloads



Main Points

Cache Replacement Policies
— FIFO, MIN, LRU, LFU, Clock

Memory-mapped files
Demand-paged virtual memory
Other applications of virtual addressing



Cache Replacement Policy

* On a cache miss, how do we choose which
entry to replace?

— Assuming the new entry is more likely to be used
in the near future

— In direct mapped caches, not an issue!

* Policy goal: reduce cache misses
— Improve expected case performance
— Also: reduce likelihood of very poor performance



A Simple Policy

* Random?
— Replace a random entry

* FIFO?

— Replace the entry that has been in the cache the
longest time

— What could go wrong?



FIFO in Action

Reference A B C D E A B C D E

1 A E D

2 B A E
3 C B

L D C

Worst case for FIFO is if program strides through
memory that is larger than the cache



MIN, LRU, LFU

* MIN

— Replace the cache entry that will not be used for the
longest time into the future

— Optimality proof based on exchange: if evict an entry
used sooner, that will trigger an earlier cache miss

e Least Recently Used (LRU)

— Replace the cache entry that has not been used for
the longest time in the past

— Approximation of MIN

e Least Frequently Used (LFU)

— Replace the cache entry used the least often (in the
recent past)



LRU/MIN for Sequential Scan

LRU
Reference A B C D E A B C D E A B C D
1 A E D C
2 B A E D
3 C B A
4 D C B
MIN

1
2
3 C + D 3
4




LRU

Reference A

1
2
3

A

FIFO

L "\

—

L\




Belady’s Anomaly

FIFO (3 slots)
Reference A B C D A B E A B
1 A D E
2 B A +
3 C B +
FIFO (4 slots)
1 A + E

S W
O
w




Models for Application File I/0

* Explicit read/write system calls
— Data copied to user process using system call
— Application operates on data
— Data copied back to kernel using system call

e Memory-mapped files
— Open file as a memory segment

— Program uses load/store instructions on segment
memory, implicitly operating on the file

— Page fault if portion of file is not yet in memory

— Kernel brings missing blocks into memory, restarts
process



Advantages to Memory-mapped Files

Programming simplicity, esp for large file

— Operate directly on file, instead of copy in/copy out

Zero-copy 1/0

— Data brought from disk directly into page frame

Pipelining

— Process can start working before all the pages are
populated

Interprocess communication
— Shared memory segment vs. temporary file



Web Server

Server . I
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Zero Copy I/O
Block Aligned Read/Write System Calls

User buffer Free page

Page Table/> Page Table
Kernel buffer wnd kernel buffer

Before zero copy After zero copy




Demand Paging

Physical memory Disk
Page Table page frames M
Frame  Access N
new data
invalid
> old data ©

/ rd/wr




/.

Demand Paging

TLB miss
Page table walk

Page fault (page invalid
in page table)
Trap to kernel

Convert address to file +
offset

Allocate page frame
—  Evict page if needed

Initiate disk block read
into page frame

10.

11.
12.

13.

Disk interrupt when
DMA complete

Mark page as valid

Resume process at
faulting instruction

TLB miss

Page table walk to fetch
translation

Execute instruction



Allocating a Page Frame

Select old page to evict

Find all page table entries that refer to old page
— If page frame is shared

Set each page table entry to invalid
Remove any TLB entries

— Copies of now invalid page table entry

Write changes to page to disk, if necessary



How do we know if page has been
modified?

* Every page table entry has some bookkeeping

— Has page been modified?
* Set by hardware on store instruction to page
* In both TLB and page table entry

— Has page been used?
* Set by hardware on load or store instruction to page
* |In page table entry on a TLB miss

* Can be reset by the OS kernel

— When changes to page are flushed to disk
— To track whether page is recently used



TLB/

-~ dirty=0
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-~ dirty =1

Physical memory
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page frames
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Emulating a Modified Bit

* Some processor architectures do not keep a
modified bit in the page table entry

— Extra bookkeeping and complexity
e OS can emulate a modified bit:
— Set all clean pages as read-only

— On first write, take page fault to kernel
— Kernel sets modified bit, marks page as read-write



Emulating a Use Bit

* Some processor architectures do not keep a
use bit in the page table entry

— Extra bookkeeping and complexity

* OS can emulate a use bit:
— Set all unused pages as invalid

— On first read/write, take page fault to kernel

— Kernel sets use bit, marks page as read or read/
write



Clock Algorithm: Estimating LRU

Page Frames
1-use:0

2 -use: 1

3 -use:0
4 -use:0

5 -use:0

6 -use: 1

/ -use: 1
9 - 8 -use: 1
use: 0



Clock Algorithm: Estimating LRU

o Page Frames
* Periodically,

1-use:0
sweep through all 2 -use: T
Pages 3 -use:0
* |f page is unused,
] 4 -use:0
reclaim
* |f page is used, 5 - use: 0
mark as unused 6 - use: 1
/ -use: 1
9 - 8 -use: 1

use: 0



Nth Chance: Not Recently Used

* Periodically, sweep through all page frames

* |f page hasn’t been used in any of the past N
sweeps, reclaim

* |f page is used, mark as unused and set as
active in current sweep



From Memory-Mapped Files to
Demand-Paged Virtual Memory

* Every process segment backed by a file on disk
— Code segment -> code portion of executable
— Data, heap, stack segments -> temp files
— Shared libraries -> code file and temp data file
— Memory-mapped files -> memory-mapped files
— When process ends, delete temp files

 Provides the illusion of an infinite amount of
memory to programs

— Unified LRU across file buffer and process memory



Question

 What happens to system performance as we
increase the number of processes?

— If the sum of the working sets > physical memory?



Throughput

Thrashing

—

Number of Active Processes



Virtual Machines and Virtual Memory
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Shadow Page Tables
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Memory Compression
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Definitions

* Checkpoint
* Restart



Transparent Checkpoint

checkpoint restart
(process copy) (process copy)
/N
process process
execute
A4
instructions X
failure
N
/

time



Question

* How long do we need to wait between
starting the checkpoint and resuming the
execution of the program?



Incremental Checkpoint

Memory Incremental Incremental Memory
Checkpoint Checkpoint Checkpoint Checkpoint
A A
B P P
C R R
D Q Q
E S S




Question

 What if we restart the process on a different
machine?

— Process migration!

 What if we checkpoint only key data
structures?

— Recoverable virtual memory



