11/2/12

Caching and Virtual Memory

Last Time

* Cache concept
— Hardware vs. software caches

* When caches work and when they don’t
— Spatial/temporal locality vs. Zipf workloads

Main Points

Cache Replacement Policies
— FIFO, MIN, LRU, LFU, Clock

Memory-mapped files
Demand-paged virtual memory
Other applications of virtual addressing

Cache Replacement Policy

* On a cache miss, how do we choose which
entry to replace?

— Assuming the new entry is more likely to be used
in the near future

— In direct mapped caches, not an issue!

* Policy goal: reduce cache misses
— Improve expected case performance
— Also: reduce likelihood of very poor performance




11/2/12

A Simple Policy

Random?

— Replace a random entry

FIFO?

— Replace the entry that has been in the cache the
longest time

— What could go wrong?

Reference A

1 A

2
3
4

FIFO in Action
D E A B C D E A B (] D E
E D Cc
A E D
B A E
D C B

Worst case for FIFO is if program strides through
memory that is larger than the cache

MIN, LRU, LFU

MIN

— Replace the cache entry that will not be used for the
longest time into the future

— Optimality proof based on exchange: if evict an entry
used sooner, that will trigger an earlier cache miss

Least Recently Used (LRU)

— Replace the cache entry that has not been used for
the longest time in the past

— Approximation of MIN
Least Frequently Used (LFU)

— Replace the cache entry used the least often (in the
recent past)

LRU/MIN for Sequential Scan

Reference A

1 A E D ¢
2 A E D
3 B A E
4 D C B
MIN
1 A + + +
2 + + C
3 + D +
4 D E + +




11/2/12

LRU
Reference A B A C B D A D E D A E B A
1 A + + +
2 B + +
3 Cc E +
4 D + +
FIFO
1 A + + E
2 B + A
3 Cc + B
4 D + +
MIN
1 A + + +
2 B + +
3 C E +
4 D + +

Belady’s Anomaly

FIFO (3 slots)
Reference A B C D A B E A B C D E
1 A D E +
2 B A + C
3 C B + D
FIFO (4 slots)
1 A + E D
2 B + A E
3 C B
4 D [

Models for Application File I/O

* Explicit read/write system calls
— Data copied to user process using system call
— Application operates on data
— Data copied back to kernel using system call
*  Memory-mapped files
— Open file as a memory segment
— Program uses load/store instructions on segment
memory, implicitly operating on the file
— Page fault if portion of file is not yet in memory

— Kernel brings missing blocks into memory, restarts
process

Advantages to Memory-mapped Files

* Programming simplicity, esp for large file
— Operate directly on file, instead of copy in/copy out
* Zero-copy I/O
— Data brought from disk directly into page frame
* Pipelining
— Process can start working before all the pages are
populated
* Interprocess communication
— Shared memory segment vs. temporary file




11/2/12

Web Server

Zero Copy I/O
Block Aligned Read/Write System Calls

Server 7
4. parse request 9. format reply
1. network 10. network 5.file
socket 3. kernel SOCE:tWO' read 8. kernel User buffer Free page
read copy write copy Page Table I:I Page Table I:I
Kernel ‘ |
11. kernel copy Kernel buffer w;nd kernel buffer
from user buffer
D]]] into network buffer I:I I:I
2 - 12. format outgoing 6. disk 7. disk
p';c?{z(aDr;\'A\:Tg packet and DMA request o t:(DMA) Before zero copy After zero copy
Hardware \I/
Network Interface Disk Interface
Demand Paging Demand Paging
1. TLB miss 8. Disk interrupt when
Physical memory Disk
Page Table page frames 2. Page table walk DMA complete .
Frame  Access - 3. Page fault (page invalid 9. Mark page as valid
new data in page table) 10. Resume process at
faulting instruction
invalid Trap to kernel .g
/_/__49 Slddata - 5. Convert address to file +  11. TLB miss
offset 12. Page table walk to fetch
4 rd/wr 6. Allocate page frame translation
—  Evict page if needed 13. Execute instruction
7. Initiate disk block read

into page frame




11/2/12

Allocating a Page Frame

» Select old page to evict

* Find all page table entries that refer to old page
— If page frame is shared

* Set each page table entry to invalid

* Remove any TLB entries
— Copies of now invalid page table entry

Write changes to page to disk, if necessary

— Has page been used?

* Set by hardware on load or store instruction to page
* In page table entry on a TLB miss

* Can be reset by the OS kernel
— When changes to page are flushed to disk
— To track whether page is recently used

How do we know if page has been
modified?

* Every page table entry has some bookkeeping
— Has page been modified?
« Set by hardware on store instruction to page
* In both TLB and page table entry

TLB

Physical memory Disk

Page Table page frames

dirty =0

Frame Access l l

e B A s B

TLB

Page Table
Frame Access

> new data

dirty =1

Physical memory
page frames

Disk




11/2/12

Emulating a Modified Bit

* Some processor architectures do not keep a
modified bit in the page table entry
— Extra bookkeeping and complexity
* OS can emulate a modified bit:
— Set all clean pages as read-only
— On first write, take page fault to kernel
— Kernel sets modified bit, marks page as read-write

Emulating a Use Bit

* Some processor architectures do not keep a
use bit in the page table entry

— Extra bookkeeping and complexity
* OS can emulate a use bit:
— Set all unused pages as invalid
— On first read/write, take page fault to kernel

— Kernel sets use bit, marks page as read or read/
write

Clock Algorithm: Estimating LRU

Page Frames
1-use:0

2 -use: 1

3 -use:0
4 -use: 0
5 -use:0

6 -use: 1
7 -use: 1
9 - 8 -use: 1
use: 0

Clock Algorithm: Estimating LRU

.. Page Frames
* Periodically,

1-use:0

sweep through all 2 -use: 1

pages 3 -use:0
* If page is unused,

N 4 -use: 0

reclaim
* If page is used, 5 -use:0

mark as unused 6 -use: 1

7 -use:1
9 - 8 -use: 1

use: 0




11/2/12

Nth Chance: Not Recently Used

* Periodically, sweep through all page frames

* If page hasn’t been used in any of the past N
sweeps, reclaim

* If page is used, mark as unused and set as
active in current sweep

From Memory-Mapped Files to
Demand-Paged Virtual Memory

Every process segment backed by a file on disk
— Code segment -> code portion of executable

— Data, heap, stack segments -> temp files

— Shared libraries -> code file and temp data file

— Memory-mapped files -> memory-mapped files

— When process ends, delete temp files

Provides the illusion of an infinite amount of
memory to programs

— Unified LRU across file buffer and process memory

Question

* What happens to system performance as we
increase the number of processes?
— If the sum of the working sets > physical memory?

Thrashing

Throughput

Number of Active Processes




11/2/12

Virtual Machines and Virtual Memory

Shadow Page Tables

Guest Virtual
Addresses

Guest Physical
Addresses

>

Guest Page
Tables

Host Page
Tables

=

Host Physical
Addresses

Guest Virtual Guest Physical Host Physical
Addresses Guest Page Addresses Host Page Addresses
Tables Tables
Shadow Page
Tables

Memory Compression

Guest Process Guest Page A(;:est Phyf/l;;L] H_(I?slt)lPage HXf;dPhysmal
onVM #1 Tables [es5es, avies =
> page A
Guest Physical age B
Guest Process Addresses, VM #2 > pag

on VM #2

>|:.|_/>

delta relative
to page A

Definitions

* Checkpoint
* Restart




11/2/12

Transparent Checkpoint

checkpoint restart
(process copy) (process copy)
process process
execute X
instructions
failure
time

Question

* How long do we need to wait between
starting the checkpoint and resuming the
execution of the program?

Incremental Checkpoint

Memory Incremental Incremental Memory
Checkpoint Checkpoint Checkpoint Checkpoint
A A
8 [~ ] P
c 2] |
D [a] Q
E ;

Question

* What if we restart the process on a different
machine?

— Process migration!

* What if we checkpoint only key data
structures?

— Recoverable virtual memory




