Caching and Virtual Memory



Last Time

* Flexible Address Translation
— Segmentation + paged translation
— Multi-level paged translation
— Hashing
* Efficient Address Translation
— Translation Lookaside Buffers (TLBs)

— Virtually addressed and physically addressed
caches



Main Points

* Cache concept
— Hardware vs. software caches

 When caches work and when they don’t
— Spatial/temporal locality vs. Zipf workloads

* Cache replacement policies



ARM CoreSight™ Multicore Debug and Trace Architecture

D-Cache|

D-Cache

Interrupt Contro

and Distribution B Cache-2-Cache
Transfers

Primary AMBA 3 64bit Interface

@
S
<

(-

Q.

—

»

<T

I
S
@
==
St
=

(-

Snoop Control Unit (SCU)
Generic

Snoop Port
Filtering

Optional 2™I/F with Address Filtering




Multicore and Hyperthreading

Modern CPU has several functional units

— Instruction decode

— Arithmetic/branch

— Floating point

— Instruction/data cache

— TLB

Multicore: replicate functional units (i7: 4)

— Share second/third level cache, second level TLB

Hyperthreading: logical processors that share
functional units (i7: 2)

— Better functional unit utilization during memory stalls

No difference from the OS/programmer perspective
— Except for performance, affinity, ...



Definitions

Cache
— Copy of data that is faster to access than the original
— Hit: if cache has copy
— Miss: if cache does not have copy

Cache block
— Unit of cache storage (multiple memory locations)

Temporal locality

— Programs tend to reference the same memory locations
multiple times

— Example: instructions in a loop

Spatial locality
— Programs tend to reference nearby locations
— Example: data in a loop



Cache Concept (Read)

Cache

fetch address ddress in

\,
/| cache?

yes

NO

value stored
at address

N/

fetch address

N
/



Cache Concept (Write)

Cache
store value store value
at address N at address N address in fetch address\
/ / cache? no /
WriteBuffer yes
store value
in cache
Write through: changes sent |
: : store value
immediately to next level of storage N t address
if write through >

Write back: changes stored in cache
until cache block is replaced



Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100 ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1XB

i7 has 8MB as shared 3" level cache; 2" level cache is per-core



Hardware Design Principle

The bigger the memory, the slower the memory



Address Translation with TLB

Processor

Translation Box

Physical Address

virtual page in TLB?

Virtual Address m
/ valid page table entry?

/\ raise except/

Instruction fetch or data read/write (untranslated)

Physical
Memory




Virtually Addressed Caches

Translation Box

Physical Address

virtual page in TLB? yes

no7
location m

Virtual Addresg>in virtual ,
?
ﬁcache? valid page table entry: Physical

Processor no Memory
data

raise exception

Instruction fetch or data read/write (untranslated)




Questions

 With a virtual cache, what do we need to do
on a context switch?

* What if the virtual cache > page size?
— Page size: 4KB (x86)
— First level cache size: 64KB (i7)
— Cache block size: 32 bytes



Aliasing

e Alias: two (or more) virtual cache entries that
refer to the same physical memory

— What if we modify one alias and then context
switch?

* Typical solution
— On a write, lookup virtual cache and TLB in parallel
— Physical address from TLB used to check for aliases



Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100 ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1XB

i7 has 8MB as shared 3" level cache; 2" level cache is per-core



Translation on a Modern Processor

Translation Box

Physical Address

virtual page in TLB? yes

no7
location N yes

Virtual Address>in virtual . location in
cache? valid page table entry? physical ﬁ Physical

?
Processor J/no cache? Memory

< data

N

Instruction fetch or data read/write (untranslated)

raise exception




Question

e What is the cost of a first level TLB miss?
— Second level TLB lookup

e What is the cost of a second level TLB miss?
— x86: 2-4 level page table walk

* How expensive is a 4-level page table walk on
a modern processor?



Working Set Model

* Working Set: set
of memory
locations that
need to be
cached for
reasonable
cache hit rate

* Thrashing: when
system has too
small a cache

Cache Hit Rate

1

0

Cache Size

A4



Phase Change Behavior

Progra ms 1 \ new equilibrium

can change
their
working set

Phase
change

Context
switches
also change
working set

Context
switch

Cache Hit Rate

N

Time



Zipf Distribution

e Caching behavior of many systems are not
well characterized by the working set model
* An alternative is the Zipf distribution

— Popularity ~ 1/k”c, for kth most popular item,
1<c<?2



Popularity

Zipf Distribution

N

Rank



Zipf Examples

 Web pages

* Movies

e Library books
* Words in text
e Salaries

* City population

Common thread: popularity is self-reinforcing



Cache Hit Rate

Zipf and Caching

001% .01% 1% 1% 10%
Cache Size (log scale)

all

N/



Cache Lookup: Fully Associative

address value

match at any address?

return value



Cache Lookup: Direct Mapped

address value

hash(address)

—

=7 match at hash(address)?

return value



Cache Lookup: Set Associative

hash(address)

o

address value address value
0x0053 0x120d
=? match at hash(address)? =? match at hash(address)?

return value

return value




Page Coloring

 What happens when cache size >> page size?
— Direct mapped or set associative
— Multiple pages map to the same cache line

* OS page assighnment matters!
— Example: 8MB cache, 4KB pages
— 1 of every 2K pages lands in same place in cache

e What should the OS do?



Cache Replacement Policy

* On a cache miss, how do we choose which
entry to replace?

— Assuming the new entry is more likely to be used
in the near future

— In direct mapped caches, not an issue!

* Policy goal: reduce cache misses
— Improve expected case performance
— Also: reduce likelihood of very poor performance



A Simple Policy

* Random?
— Replace a random entry

* FIFO?

— Replace the entry that has been in the cache the
longest time

— What could go wrong?



FIFO in Action

Reference A B C D E A B C D E

1 A E D

2 B A E
3 C B

L D C

Worst case for FIFO is if program strides through
memory that is larger than the cache



MIN, LRU, LFU

* MIN

— Replace the cache entry that will not be used for the
longest time into the future

— Optimality proof based on exchange: if evict an entry
used sooner, that will trigger an earlier cache miss

e Least Recently Used (LRU)

— Replace the cache entry that has not been used for
the longest time in the past

— Approximation of MIN

e Least Frequently Used (LFU)

— Replace the cache entry used the least often (in the
recent past)



LRU/MIN for Sequential Scan

LRU
Reference A B C D E A B C D E A B C D
1 A E D C
2 B A E D
3 C B A
4 D C B
MIN

1
2
3 C + D 3
4




LRU

Reference A

1
2
3

A

FIFO

L "\

—

L\




Belady’s Anomaly

FIFO (3 slots)
Reference A B C D A B E A B
1 A D E
2 B A +
3 C B +
FIFO (4 slots)
1 A + E

S W
O
w




