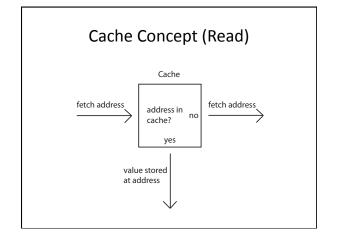

Caching and Virtual Memory

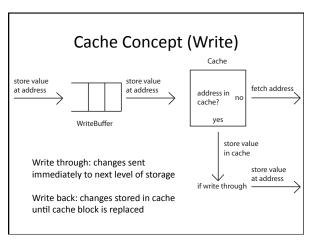
Last Time

- Flexible Address Translation
 - Segmentation + paged translation
 - Multi-level paged translation
 - Hashing
- Efficient Address Translation
 - Translation Lookaside Buffers (TLBs)
 - Virtually addressed and physically addressed caches

Main Points

- Cache concept
 - Hardware vs. software caches
- When caches work and when they don't
 - Spatial/temporal locality vs. Zipf workloads
- Cache replacement policies



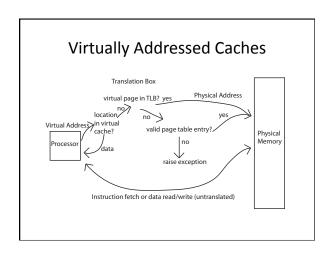

Multicore and Hyperthreading

- Modern CPU has several functional units
 - Instruction decode
 - Arithmetic/branch
 - Floating point
 - Instruction/data cache
 - TLB
- Multicore: replicate functional units (i7: 4)
 - Share second/third level cache, second level TLB
- Hyperthreading: logical processors that share functional units (i7: 2)
- Better functional unit utilization during memory stalls
- No difference from the OS/programmer perspective
 - Except for performance, affinity, ...

Definitions

- Cache
 - Copy of data that is faster to access than the original
 - Hit: if cache has copy
 - Miss: if cache does not have copy
- Cache block
 - Unit of cache storage (multiple memory locations)
- Temporal locality
 - Programs tend to reference the same memory locations multiple times
 - Example: instructions in a loop
- · Spatial locality
 - Programs tend to reference nearby locations
 - Example: data in a loop

Memory Hierarchy


Cache	Hit Cost	Size
1st level cache/first level TLB	1 ns	64 KB
2nd level cache/second level TLB	4 ns	256 KB
3rd level cache	12 ns	2MB
Memory (DRAM)	100 ns	10 GB
Data center memory (DRAM)	100 μ s	100 TB
Local non-volatile memory	100 μ s	100 GB
Local disk	10 ms	1 TB
Data center disk	10 ms	100 PB
Remote data center disk	200 ms	1 XB

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

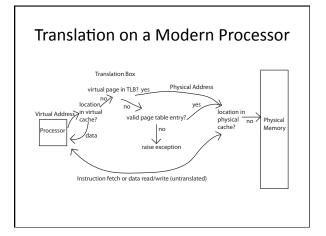
Hardware Design Principle

The bigger the memory, the slower the memory

Address Translation with TLB Translation Box virtual page in TLB? Virtual Address valid page table entry? Processor Instruction fetch or data read/write (untranslated)

Questions

- With a virtual cache, what do we need to do on a context switch?
- What if the virtual cache > page size?
 - Page size: 4KB (x86)
 - First level cache size: 64KB (i7)
 - Cache block size: 32 bytes


Aliasing

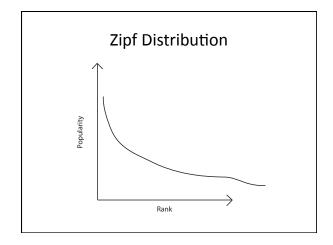
- Alias: two (or more) virtual cache entries that refer to the same physical memory
 - What if we modify one alias and then context switch?
- Typical solution
 - On a write, lookup virtual cache and TLB in parallel
 - Physical address from TLB used to check for aliases

Memory Hierarchy

Cache	Hit Cost	Size
1st level cache/first level TLB	1 ns	64 KB
2nd level cache/second level TLB	4 ns	256 KB
3rd level cache	12 ns	2MB
Memory (DRAM)	100 ns	10 GB
Data center memory (DRAM)	100 μ s	100 TB
Local non-volatile memory	100 μ s	100 GB
Local disk	10 ms	1 TB
Data center disk	10 ms	100 PB
Remote data center disk	200 ms	1 XB

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

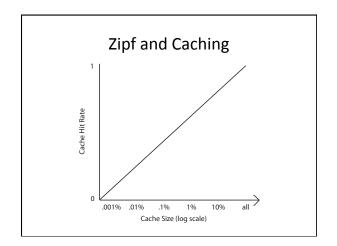
Question

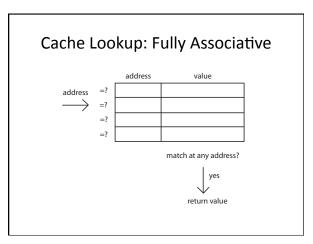

- What is the cost of a first level TLB miss?
 Second level TLB lookup
- What is the cost of a second level TLB miss?
 x86: 2-4 level page table walk
- How expensive is a 4-level page table walk on a modern processor?

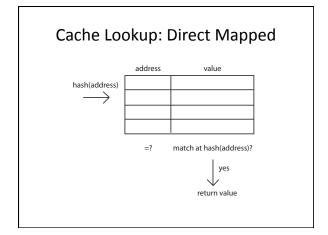
• Working Set: set of memory locations that need to be cached for reasonable cache hit rate • Thrashing: when system has too small a cache

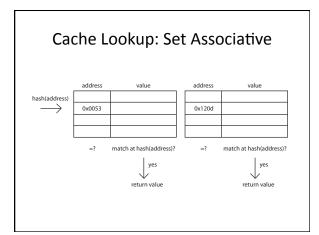
Phase Change Behavior Programs can change their working set Phase change Phase change Context switches also change working set

Zipf Distribution


- Caching behavior of many systems are not well characterized by the working set model
- An alternative is the Zipf distribution
 Popularity ~ 1/k^c, for kth most popular item,
 1 < c < 2




Zipf Examples


- Web pages
- Movies
- Library books
- Words in text
- Salaries
- · City population
- •

Common thread: popularity is self-reinforcing

Page Coloring

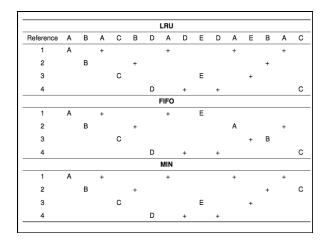
- What happens when cache size >> page size?
 - Direct mapped or set associative
 - Multiple pages map to the same cache line
- OS page assignment matters!
 - Example: 8MB cache, 4KB pages
 - $-\,1$ of every 2K pages lands in same place in cache
- What should the OS do?

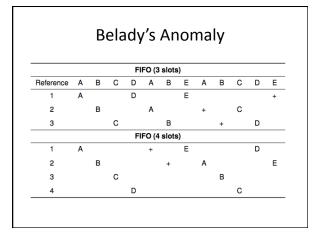
Cache Replacement Policy

- On a cache miss, how do we choose which entry to replace?
 - Assuming the new entry is more likely to be used in the near future
 - In direct mapped caches, not an issue!
- Policy goal: reduce cache misses
 - Improve expected case performance
 - Also: reduce likelihood of very poor performance

A Simple Policy

- Random?
 - Replace a random entry
- FIFO?
 - Replace the entry that has been in the cache the longest time
 - What could go wrong?


Reference	Α	В	С	D	Е	Α	В	С	D	Е	Α	В	С	D	Е
1	Α				Е				D				С		
2		В				Α				Е				D	
3			С				В				Α				Е
4				D				С				В			
Worst memo						_			s thr	oug	h				


MIN, LRU, LFU

- MIN
 - Replace the cache entry that will not be used for the longest time into the future
 - Optimality proof based on exchange: if evict an entry used sooner, that will trigger an earlier cache miss
- Least Recently Used (LRU)
 - Replace the cache entry that has not been used for the longest time in the past
 - Approximation of MIN
- Least Frequently Used (LFU)
 - Replace the cache entry used the least often (in the recent past)

LRU/MIN for Sequential Scan

							LRU								
Reference	Α	В	С	D	Е	Α	В	С	D	Е	Α	В	С	D	Е
1	Α				Е				D				С		
2		В				Α				Е				D	
3			С				В				Α				Е
4				D				С				В			
							MIN								
1	Α					+					+			+	
2		В					+					+	С		
3			С					+	D					+	
4				D	Е					+					+

