10/25/12

Address Translation
(part 2)

Last Time

Address Translation Concept

* Flexible Address Translation
— Base and bound
— Segmentation
* Program = multiple contiguous regions of memory
* Modern programs have many segments

— Code, data, per core heap, per thread stack, code/data for
each separate library

* Hardware relocation and bound on each reference
* Copy on write

» Zero on reference

Main Points

* Flexible Address Translation
— Paged Translation
— Segmentation + paged translation
— Multi-level paged translation
— Hashing
* Efficient Address Translation
— Translation Lookaside Buffers (TLBs)

— Virtually addressed and physically addressed
caches

Address Translation Concept

Translation Box

yes Physical Address

Virtual Address

ok?

Physical

Processor| Memory

raise exception

Instruction fetch or data read/write (untranslated)

10/25/12

Segmentation

Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can transparently grow stack/heap as needed
— Can detect if need to copy-on-write
Cons?
— Complex memory management
* Need to find chunk of a particular size

— May need to rearrange memory from time to time to
make room for new segment or growing segment
* External fragmentation: wasted space between chunks

Paged Translation

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame
* Each process has its own page table

— Stored in physical memory

— Hardware registers

* pointer to page table start
* page table length

oxffefrr

Virtual Address: l page #] page offset I
Physical Address: l page table[page #].frame I page offset I
Process View of Memory Page Table Physical Memory

Frame Access

0x12 read
0x08 d
heap \é
\L 0x0d rd/wr |

page # < page table length AND
page table[page #].access is permitted

no

stack

raise exception

Process View Physical Memory

A

B |

C J

b Page Table E

E

; 4

G 3

H 1

| E

| F

K G

L H
A
B
C
D

10/25/12

Paging Questions

* What must be saved/restored on a process
context switch?

— Pointer to page table/size of page table
— Page table itself is in main memory

* What if page size is very small?
* What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

* Can we share memory between processes?

— Set entries in both page tables to point to same page
frames

— Need core map of page frames to track which
processes are pointing to which page frames
* UNIX fork with copy on write at page granularity
— Copy page table entries to new process
— Mark all pages as read-only
— Trap into kernel on write (in child or parent)
— Copy page and resume execution

Paging and Fast Program Start

* Can | start running a program before its code
is in physical memory?
— Set all page table entries to invalid
— When a page is referenced for first time
* Trap to OS kernel
* OS kernel brings in page
* Resumes execution

— Remaining pages can be transferred in the
background while program is running

Sparse Address Spaces

* Might want many separate segments
— Per-processor heaps
— Per-thread stacks
— Memory-mapped files
— Dynamically linked libraries
* What if virtual address space is sparse?
— On 32-bit UNIX, code starts at 0
— Stack starts at 2431
— 4KB pages => 500K page table entries
— 64-bits => 4 quadrillion page table entries

10/25/12

Multi-level Translation

* Tree of translation tables

— Paged segmentation

— Multi-level page tables

— Multi-level paged segmentation

* All 3: Fixed size page as lowest level unit
— Efficient memory allocation

— Efficient disk transfers

— Easier to build translation lookaside buffers

Paged Segmentation

* Process memory is segmented
* Segment table entry:
— Pointer to page table
— Page table length (# of pages in segment)
— Access permissions
* Page table entry:
— Page frame
— Access permissions

— Efficient reverse lookup (from physical -> virtual) .

Share/protection at either page or segment-level
— Page granularity for protection/sharing

Virtual Address: I segment # page # I page offset |

Physical Address: Isegmen(table[segment #].pageTable[page tt]l page offset |

Multilevel Paging

Process View of Memory Segment Table

pageTable length access

Physical Memory

Virtual Address: | index | index2 | index3 | page offset |
| 0Ox0a read
I 0x5 rd/wr Physical Address = pageTable[index].pageTable[index2] .pageTablelindex3] | page offset
| [oao [ramwr
oxto000 \ > == geTae Ll
data &
0x10280 Frame _Access Level 2
PageTable | o0x12 read index
0x08 read Level 3
0x20000 index2
fi
> index3 page frame
heap
page # < segment table[segment #].length
0x20800 AND segment table[segment #].access is permitted offset

AND pageTable[page #].access is permitted

no

raise exception

10/25/12

x86 Multilevel Paged Segmentation

* Global Descriptor Table (segment table)
— Pointer to page table for each segment
— Segment length
— Segment access permissions
— Context switch: change global descriptor table register
(GDTR, pointer to global descriptor table)
* Multilevel page table
— 4KB pages; each level of page table fits in one page
« Only fill page table if needed
— 32-bit: two level page table (per segment)
— 64-bit: four level page table (per segment)

Multilevel Translation

* Pros:
— Allocate/fill only as many page tables as used
— Simple memory allocation
— Share at segment or page level
* Cons:
— Space overhead: at least one pointer per virtual
page
— Two or more lookups per memory reference

Portability

* Many operating systems keep their own memory
translation data structures

— List of memory objects (segments)

— Virtual -> physical

— Physical -> virtual

— Simplifies porting from x86 to ARM, 32 bit to 64 bit
* Inverted page table

— Hash from virtual page -> physical page

— Space proportional to # of physical pages

Do we need multi-level page tables?

* Use inverted page table in hardware instead of
multilevel tree

— IBM PowerPC
— Hash virtual page # to inverted page table bucket
— Location in IPT => physical page frame

* Pros/cons?

10/25/12

Efficient Address Translation

Translation lookaside buffer (TLB)

— Cache of recent virtual page -> physical page
translations

— If cache hit, use translation

— If cache miss, walk multi-level page table
* Cost of translation =

Cost of TLB lookup +

Prob(TLB miss) * cost of page table lookup

Virtual Address: | virtualPage # | page offset |

Physical Address: | TLB.lookup(virtual page #).pageFrame | page offset |

Process View of Memory

0 Translation Lookaside Buffer (TLB)
0X500 virtualPage pageFrame access
=7 0x0000 0x8 read
=? 0x40ff 0x12 rd/wr
0x10000 =7 | ox0001 oxd read
0x10280 =2 invalid =

0x20000

TLB contains virtual page #?

heap \LT\O

0x20800 do page table lookup

Physical Memory

Software Loaded TLB

* Do we need a page table at all?

— MIPS processor architecture

— If translation is in TLB, ok

— If translation is not in TLB, trap to kernel

— Kernel computes translation and loads TLB

— Kernel can use whatever data structures it wants
¢ Pros/cons?

When Do TLBs Work/Not Work?

page # Video Frame Buffer
0

1
2
3

1021
1022
1023

10/25/12

When Do TLBs Work/Not Work?

page # Video Frame Buffer

* Video Frame 0

Buffer: 32 bits 1

x 1K x 1K = j
4MB

1021

1022

1023

Superpages

* TLB entry can be
— A page
— A superpage: a set of contiguous pages
— x86: superpage is set of pages in one page table
—x86 TLB entries
* 4KB
« 2MB
* 1GB

When Do TLBs Work/Not Work, part 2

* What happens on a context switch?
— Reuse TLB?
— Discard TLB?

* Motivates hardware tagged TLB
— Each TLB entry has process ID
— TLB hit only if process ID matches current process

Virtual Address: I virtualPage # | page offset |

PhySica|AddTESS:| TLB.lookup(virtual page #).pageFrame | page offset |

Process 1 View of Memory

0 Translation Lookaside Buffer (TLB)
0x500 process ID virtualPage pageFrame access
=? 0| o0x0053 0x3 rd/wr

=71 0x40ff 0x12 rd/wr

0x10000 =2| 1| 0x0001 oxd read
data
0x10280 =21 0 0x0001 0x5 read

TLB contains virtual page #
for the current process?

0x20000

no

heap

do page table lookup

0x20800

Physical Memory

10/25/12

When Do TLBs Work/Not Work, part 3

* What happens when the OS changes the

permissions on a page?
— For demand paging, copy on write, zero on
reference, ...

* TLB may contain old translation

— OS must ask hardware to purge TLB entry
* On a multicore: TLB shootdown

— OS must ask each CPU to purge TLB entry

TLB Shootdown

process ID virtualPage pageFrame access

=? 0 0x53 0x3 rd/wr
Processor 1 TLB

=2 | 1 | Ox4off 0x12 rd/wr

=? 0 0x53 0x3 rd/wr
Processor 2 TLB

=2 0 1 0x5 read

=? 1 0x40ff 0x12 rd/wr
Processor 3TLB

=? 0 1 0x5 read

Address Translation with TLB

Translation Box

yes Physical Address

virtual page in TLB?

Processor no

raise exception

Instruction fetch or data read/write (untranslated)

Virtual Address @
i ?
/ valid page table entry? Physical

Memory

Virtually Addressed Caches

Translation Box

virtual page in TLB? yes Physical Address

7
locatio N yes

. in virtual
Virtual Addreﬁcache? valid page table entry?

Processor no
data

Physical
Memory

raise exception

Instruction fetch or data read/write (untranslated)

Translation on a Modern Processor

Processor

Translation Box

virtual page in TLB? yes Physical Address

no7
location, N yes

Virtual Addres3in virtual N location in
ﬁcache? valid page table entry? physical ﬁ

no cache?

data

raise exception

Instruction fetch or data read/write (untranslated)

Physical
Memory

10/25/12

