Address Translation

OS/Distributed Systems Companies

Addepar
Adobe
Amazon
Arista
Clustrix
Cray
Dropbox
eBay
EMC Isilon
Extrahop
F5
Facebook

at the Job Fair

Google

Hulu

Intel
Intermec
Lawrence Livermore Labs
Microsoft
NetApp
OpenMarket
Qualcomm
Twitter
VMware
Yahoo!

Last Time

* Multiprocessor scheduling
— Affinity scheduling
— Per-processor data structures to avoid locking
— Space sharing vs. time sharing

* Queueing Theory

— Predict change in response time due to changes in

CPU speed, request rate, disk speed, application
complexity

Overload Management

e What if arrivals occur faster than service can
handle them

— If do nothing, response time will become infinite
* Turn users away?

— Which ones? Average response time is best if turn
away users that have the highest service demand

* Degrade service?

— Compute result with fewer resources
— Example: CNN static front page on 9/11
— Counterexample: highway congestion

Why Do Metro Buses Cluster?

* Suppose two Metro buses start 15 minutes
apart
— Why might they arrive at the same time?

Main Points

e Address Translation Concept

— How do we convert a virtual address to a physical
address?

* Flexible Address Translation
— Base and bound
— Segmentation
— Paging

e Efficient Address Translation
— Translation Lookaside Buffers

Address Translation Concept

Translation Box

Physical Address

yes

ok?

Physical
Memory

Virtual Addr?

Processor

A4

raise exception

Instruction fetch or data read/write (untranslated)

Address Translation Goals

Memory protection
Memory sharing

Flexible memory placement
Sparse addresses

Runtime lookup efficiency
Compact translation tables
Portability

Address Translation

 What can you do if you can (selectively) gain
control whenever a program reads or writes a
particular memory location?

— With hardware support
— With compiler-level support

e Memory management is one of the most
complex parts of the OS

— Serves many different purposes

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory
Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Cache management
— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy I/0O

— Directly from 1/O device into/out of user memory
Memory mapped files

— Access file data using load/store instructions

Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally

Distributed shared memory
— lllusion of memory that is shared between machines

Virtual Base and Bounds

Process View of Memory Hardware Translation Registers Physical Memory
0
Base | 0x5500
Virtual
Address

Bound | 0x1000

0x5500

\> Physical

. . Address
Physical Address = Virtual Address + Base

0x1000

0x6500

Virtual Address less than Bound?

\I/no

raise exception

Virtual Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)

— Can relocate in physical memory without changing
process

e Cons?

— Can’t keep program from accidentally overwriting its
own code

— Can’t share code/data with other processes
— Can’t grow stack/heap as needed

Segmentation

Segment is a contiguous region of memory

— Virtual or (for now) physical memory

Each process has a segment table (in hardware)

— Entry in table = segment

Segment can be located anywhere in physical memory
— Start

— Length

— Access permission

Processes can share segments

— Same start, length, same/different access permissions

Virtual Address: | segment # segment offset

Physical Address = segment table[segment #].base + segment offset

Process View of Memory Segment Table Physical Memory
0
Base Bound Access 0x80
code 0x1000 [0x500 | read data
0x300
0x500 0x80 | 0x280 | rd/wr X
0x1800 | 0x2000 rd/wr
0x1000
0x10000 code
data
0x10280 0x1500
segment offset < segment table[segment #].bound
AND segment table[segment #].access is permitted
0x20000 \I/n o 0x1800
heap raise exception heap

0x20800 0x2000

Segment start

length

2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -
main: 240 store #1108, r2 x: 108 abc\0
244 store pc+8§, r31
248 jump 360 main: 4240 store #1108, r2
24c 4244 store pc+S§, r31

4248 jump 360

strlen: 360 loadbyte (r2), r3 424c
420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1108 abc\0 4420 jump (r31)

UNIX fork and Copy on Write

* UNIX fork
— Makes a complete copy of a process

* Segments allow a more efficient implementation
— Copy segment table into child
— Mark parent and child segments read-only
— Start child process; return to parent

— If child or parent writes to a segment, will trap into
kernel

* make a copy of the segment and resume

Process View of Memory

0

0x500

0x10000

0x10280

0x20000

0x20800

code

Process 1 Segment Table

Base Bound Access
0x1000 | 0x500 read

0x80 | 0x280 rd/wr

0x1800 | 0x2000 rd/wr

data

Process 2 Segment Table

heap

Base Bound Access
0x1000 | 0x500 read
0x1500 | 0x280 rd/wr
0x2000 | 0x2800 rd/wr

Physical Memory

0x80

0x300

0x1000

0x1500

0x1780
0x1800

0x2000

data

code

data

heap

Zero-on-Reference

* How much physical memory do we need to
allocate for the stack or heap?

— Zero bytes!
* When program touches the heap

— Segmentation fault into OS kernel

— Kernel allocates some memory
* How much?
— Zeros the memory

* avoid accidentally leaking information!

— Restart process

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can grow stack/heap as needed
— Can detect if need to copy-on-write

* Cons?
— Complex memory management
* Need to find chunk of a particular size

— May need to rearrange memory from time to time to
make room for new segment or growing segment

e External fragmentation: wasted space between chunks

Paging

* Manage memory in fixed size units, or pages
* Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

* Each process has its own page table
— Stored in physical memory

— Hardware needs registers to hold pointer to page
table, page table length

Virtual Address: page # page offset
Physical Address: | page table[page #].frame page offset
Process View of Memory Page Table
0 Frame Access
code 0x12] read
7 [0x08 Pread
data
heap
0x0d rd/wr
page # < page table length AND
page table[page #].access is permitted
no
stack raise exception

oxfrrfrr

Physical Memory

Process View

6o mm o0 W

r X -~ -

Physical Memory

Page Table

r x -~ -

OO m>» | T Mm

Paging Questions

* What must be saved/restored on a process
context switch?

— Pointer to page table/size of page table
— Page table itself is in main memory

 What if page size is very small?
 What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

 Can we share memory between processes?

— Set both page tables to point to same page frame

— Need core map of page frames to track which
processes are pointing to which page frames

 UNIX fork with copy on write at page granularity
— Copy page table entries to new process
— Mark all pages as read-only
— Trap into kernel on write (in child or parent)

— Copy page and resume execution

Paging and Fast Program Start

* Do we need to have all of a program in
physical memory before we start it running?

— Set all page table entries to invalid

— When page is referenced for first time
* Trap to OS kernel
* OS kernel brings in page
* Resumes execution

— Remaining pages can be transferred in the
background while program is running

Sparse Address Spaces

 What if virtual address space is sparse?
— On UNIX, code starts at O
— Stack starts at 2231
— 1KB pages => 2M page table entries

