10/24/12

Address Translation

0S/Distributed Systems Companies
at the Job Fair

Addepar * Google
Adobe ¢ Hulu
Amazon * Intel

Arista ¢ Intermec
Clustrix * Lawrence Livermore Labs
Cray ¢ Microsoft
Dropbox * NetApp
eBay ¢ OpenMarket
EMC Isilon * Qualcomm
Extrahop e Twitter

F5 ¢ VMware
Facebook * Yahoo!

Last Time

Multiprocessor scheduling

— Affinity scheduling

— Per-processor data structures to avoid locking
— Space sharing vs. time sharing

Queueing Theory

— Predict change in response time due to changes in
CPU speed, request rate, disk speed, application
complexity

Overload Management

What if arrivals occur faster than service can
handle them

— If do nothing, response time will become infinite
Turn users away?

— Which ones? Average response time is best if turn
away users that have the highest service demand

Degrade service?

— Compute result with fewer resources

— Example: CNN static front page on 9/11
— Counterexample: highway congestion

10/24/12

Why Do Metro Buses Cluster?

* Suppose two Metro buses start 15 minutes
apart
— Why might they arrive at the same time?

Main Points

Address Translation Concept

— How do we convert a virtual address to a physical
address?

Flexible Address Translation
— Base and bound

— Segmentation

— Paging

Efficient Address Translation
— Translation Lookaside Buffers

Address Translation Concept

Translation Box

yes Physical Address

Virtual Address ok?

Physical

Processor| Memory

raise exception

Instruction fetch or data read/write (untranslated)

Address Translation Goals

Memory protection
Memory sharing

Flexible memory placement
Sparse addresses

Runtime lookup efficiency
Compact translation tables
Portability

10/24/12

Address Translation

What can you do if you can (selectively) gain
control whenever a program reads or writes a
particular memory location?

— With hardware support

— With compiler-level support

Memory management is one of the most
complex parts of the OS

— Serves many different purposes

Address Translation Uses

Process isolation

— Keep a process from touching anyone else’s memory, or
the kernel’s

Efficient interprocess communication

— Shared regions of memory between processes

Shared code segments

— E.g., common libraries used by many different programs
Program initialization

— Start running a program before it is entirely in memory
Dynamic memory allocation

— Allocate and initialize stack/heap pages on demand

Address Translation (more)

Cache management

— Page coloring

Program debugging

— Data breakpoints when address is accessed
Zero-copy 1/0

— Directly from 1/0 device into/out of user memory
Memory mapped files

— Access file data using load/store instructions
Demand-paged virtual memory

— lllusion of near-infinite memory, backed by disk or
memory on other machines

Address Translation (even more)

Checkpointing/restart

— Transparently save a copy of a process, without
stopping the program while the save happens

Persistent data structures

— Implement data structures that can survive system
reboots

Process migration

— Transparently move processes between machines
Information flow control

— Track what data is being shared externally
Distributed shared memory

— lllusion of memory that is shared between machines

10/24/12

Virtual Base and Bounds

Process View of Memory
0

Hardware Translation Registers Physical Memory

Base
Virtual
Address

Bound
0x5500

0x1000

Physical

Address
Physical Address = Virtual Address + Base

Virtual Address less than Bound? 0x6500

no

raise exception

Virtual Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)

— Can relocate in physical memory without changing
process

¢ Cons?

— Can'’t keep program from accidentally overwriting its
own code

— Can'’t share code/data with other processes
— Can'’t grow stack/heap as needed

Segmentation

Segment is a contiguous region of memory

— Virtual or (for now) physical memory

Each process has a segment table (in hardware)

— Entry in table = segment
Segment can be located anywhere in physical memory
— Start

— Length

— Access permission

Processes can share segments

— Same start, length, same/different access permissions

Virtual Address: | segment # segment offset

Physical Address = segment table[segment #].base + segment offset

Process View of Memory Segment Table Physical Memory

0 Base Bound Access
0x80
code 0x1000 | 0x500 | read data
0x500 0x80 | 0x280 | rd/wr 0x300
0x1800 | 0x2000 rd/wr
0x1000

0x10000 code
0x10280 0x1500
segment offset < segment table[segment #].bound

AND segment table[segment #].access is permitted

0x20000 no 0x1800

heap heap

raise exception

0x20800 0x2000

10/24/12

Segment start length
2 bit segment # code 0x4000 0x700
12 bit offset data 0 0x500

heap - -

Virtual Memory stack 0x2000 0x1000 Physical Memory
main: 240 store #1108, r2 x: 108 abc\0
244 store pc+8, r31
248 jump 360 main: 4240 store #1108, r2
24c 4244 store pc+8, r31
4248 jump 360
strlen: 360 loadbyte (r2), r3 424c¢
420 jump (r31) strlen: 4360 loadbyte (r2),r3
x: 1108 abc\0 4420 jump (r31)

UNIX fork and Copy on Write

* UNIX fork
— Makes a complete copy of a process
* Segments allow a more efficient implementation
— Copy segment table into child
— Mark parent and child segments read-only
— Start child process; return to parent

— If child or parent writes to a segment, will trap into
kernel
* make a copy of the segment and resume

Process View of Memory

0
code
0x500
0x10000
IIIHHEII
0x10280
0x20000
heap
0x20800

Process 1 Segment Table

Physical Memor

Base Bound Access 0x80
0x1000 | 0x500 read data
0x80 | 0x280 | rdiwr 0x300
0x1800 | 0x2000 rd/wr
0x1000
code
0x1500
Process 2 Segment Table data
0x1780
Base Bound Access
0x1800
0x1000 | 0x500 read
0x1500 | 0x280 rd/wr heap
0x2000 | 0x2800 rd/wr
0x2000

Zero-on-Reference

* How much physical memory do we need to
allocate for the stack or heap?
— Zero bytes!

* When program touches the heap
— Segmentation fault into OS kernel

— Kernel allocates some memory
* How much?
— Zeros the memory
* avoid accidentally leaking information!

— Restart process

10/24/12

Segmentation Paging

* Pros? * Manage memory in fixed size units, or pages
— Can share code/data segments between processes « Finding a free page is easy
— Can protect code segment from being overwritten

— Can grow stack/heap as needed — Bitmap allocation: 0011111100000001100
— Can detect if need to copy-on-write — Each bit represents one physical page frame
* Cons? * Each process has its own page table

— Complex memory management
* Need to find chunk of a particular size
— May need to rearrange memory from time to time to
make room for new segment or growing segment table, page table length
* External fragmentation: wasted space between chunks

— Stored in physical memory
— Hardware needs registers to hold pointer to page

Virtual Address: l page #] page offset I
Process View i
Physical Address: l page table[page #].frame I page offset I Physical Memory
A
Process View of Memory Page Table Physical Memory B |
Frame Access c]
0x12 read D K
0x08 d Page Table L
E
E 4
heap G 3
H 1
| E
0x0d rd/wr | F
! G
page # < page table length AND K H
page table[page #].access is permitted L
no A
B
stack . . c
raise exception
oxffrt D

10/24/12

Paging Questions

* What must be saved/restored on a process
context switch?

— Pointer to page table/size of page table
— Page table itself is in main memory

* What if page size is very small?

* What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

* Can we share memory between processes?
— Set both page tables to point to same page frame
— Need core map of page frames to track which
processes are pointing to which page frames
* UNIX fork with copy on write at page granularity
— Copy page table entries to new process
— Mark all pages as read-only
— Trap into kernel on write (in child or parent)
— Copy page and resume execution

Paging and Fast Program Start

* Do we need to have all of a program in
physical memory before we start it running?
— Set all page table entries to invalid

— When page is referenced for first time
* Trap to OS kernel
* OS kernel brings in page
* Resumes execution

— Remaining pages can be transferred in the
background while program is running

Sparse Address Spaces

What if virtual address space is sparse?
— On UNIX, code starts at 0
— Stack starts at 2731

— 1KB pages => 2M page table entries

