10/19/12

CPU Scheduling

Main Points

Scheduling policy: what to do next, when
there are multiple threads ready to run

— Or multiple packets to send, or web requests to
Sserve, or ...

Definitions

— response time, throughput, predictability
Uniprocessor policies

— FIFO, round robin, optimal

Example

* You manage a web site, that suddenly
becomes wildly popular. Do you?

— Buy more hardware?

— Implement a different scheduling policy?

— Turn away some users? Which ones?

How much worse will performance get if the
web site becomes even more popular?

Definitions

Task/Job

— User request: e.g., mouse click, web request, shell command, ...

Latency/response time
— How long does a task take to complete?
Throughput
— How many tasks can be done per unit of time?
Overhead
— How much extra work is done by the scheduler?
Fairness
— How equal is the performance received by different users?
Predictability
— How consistent is the performance over time?

10/19/12

More Definitions First In First Out (FIFO)
Workload ¢ Schedule tasks in the order they arrive
— Set of tasks for system to perform
Preemptive scheduler — Continue running them until they complete or give
— If we can take resources away from a running task up the processor

Work-conserving

— Resource is used whenever there is a task to run * Example: memcached

- Eo;tnon-preemptive schedulers, work-conserving is not always — Facebook cache of friend lists, ...
etter

Scheduling algorithm

— takes a workload as input

— decides which tasks to do first

— Performance metric (throughput, latency) as output

— Only preemptive, work-conserving schedulers to be considered

* On what workloads is FIFO particularly bad?

Shortest Job First (SJF) . FIFO vs. SJF
asks FIFO
Always do the task that has the shortest o |
remaining amount of work to do g DEI
— Often called Shortest Remaining Time First (SRTF) @ O
(5) I:l
Suppose we have five tasks arrive one right 7
after each other, but the first one is much EZ 0 I !
longer than the others e 0O
— Which completes first in FIFO? Next? @ 0
— Which completes first in SJIF? Next? ® g
Time

10/19/12

Shortest Job First

Claim: SJF is optimal for average response time
— Why?

For what workloads is FIFO optimal?

Pessimal?

Does SJF have any downsides?

Starvation and Sample Bias

* Suppose you want to compare FIFO and SJF on
some sequence of arriving tasks

— Compute average response time as the average
for tasks that start/end in some window

* Is this valid or invalid?

Round Robin

Each task gets resource for a fixed period of
time (time quantum)
— If task doesn’t complete, it goes back in line
Need to pick a time quantum
— What if time quantum is too long?

* Infinite?
— What if time quantum is too short?

* One instruction?

Round Robin

Tasks Round Robin (1 ms time slice)

1) I:l [rest of task 1

Round Robin (100 ms time slice)

[ON|] [rest of task 1
@ O

e O

@ O

©) O

Time

10/19/12

Round Robin vs. FIFO

* Assuming zero-cost time slice, is Round Robin
always better than FIFO?

Round Robin vs. FIFO

Tasks Round Robin (1 ms time slice)

o o 0 0 0O
O o 0O 0

=

O
I:ID
O
O
O

FIFO and SJF
o]
@ —
o —
@ [
© —
Time

Round Robin vs. Fairness

* Is Round Robin always fair?

Mixed Workload

Tasks 1/0 /0
\I/completes \I/comple(es

1/0 bound I:l

issues gets

/0 CPU

request
CPUbound 1

Time

10/19/12

Max-Min Fairness

* How do we balance a mixture of repeating
tasks:
— Some I/0 bound, need only a little CPU
— Some compute bound, can use as much CPU as
they are assigned
* One approach: maximize the minimum
allocation given to a task

— Schedule the smallest task first, then split the
remaining time using max-min

Multi-level Feedback Queue (MFQ)

* Goals:
— Responsiveness
— Low overhead
— Starvation freedom
— Some tasks are high/low priority
— Fairness (among equal priority tasks)
* Not perfect at any of them!
— Used in Linux (and probably Windows, MacQOS)

MFQ

» Set of Round Robin queues
— Each queue has a separate priority

* High priority queues have short time slices
— Low priority queues have long time slices

* Scheduler picks first thread in highest priority
queue

* Tasks start in highest priority queue
— If time slice expires, task drops one level

MFQ

Priority Time Slice (ms) Round Robin Queues

1

|:|:|I new or I/O

10 C/jbound task

2 20 D]I < time slice
C/jexpiration

10/19/12

Uniprocessor Summary

* FIFO is simple and minimizes overhead.

« |f tasks are variable in size, then FIFO can have
very poor average response time.

* |f tasks are equal in size, FIFO is optimal in terms
of average response time.

* Considering only the processor, SJF is optimal in
terms of average response time.

* SJF is pessimal in terms of variance in response
time.

Uniprocessor Summary

If tasks are variable in size, Round Robin approximates
SIF.

If tasks are equal in size, Round Robin will have very
poor average response time.

Tasks that intermix processor and I/O benefit from SJF
and can do poorly under Round Robin.

Max-min fairness can improve response time for I/0-
bound tasks.

Round Robin and Max-min fairness both avoid
starvation.

By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

Multiprocessor Scheduling

* What would happen if we used MFQ on a
multiprocessor?
— Contention for scheduler spinlock

— Programs will have more threads to take
advantage of multiprocessor, so more contention

¢ Amdahl’s Law

— Speedup on a multiprocessor limited by whatever
runs sequentially

— Runtime >= Sequential portion + parallel/# procs

Multiprocessor Scheduling

Modern processor is 100x slower without a
cache

Cache effects of a single ready list:
— Cache coherence overhead
* MFQ data structure would ping between caches

* Fetching data from other caches can be even slower
than re-fetching from DRAM

— Cache reuse

* Thread’s data from last time it ran is often still in its old
cache

10/19/12

Per-Processor MFQ Scheduling Parallel Programs

Oblivious: each processor time-slices its ready
list independently of the other processors

CPUT CPU2 CPU3

.50

Time p34

p3.1 p2.2
S S Pt S

px.y = thread y in process x

CPU1 CPU2 CPU3
pl4 p1.2

p13

5
5
5

Scheduling Parallel Programs Bulk Synchronous Parallel Program

* What happens if one thread gets time-sliced wut . . s

while other threads from the same program D D
are still running? |:| |:|

local computation

- Ua L

local computation

barrier

barrier

