10/17/12

Main Points

* Problems with synchronizing multiple objects
* Definition of deadlock
— Circular waiting for resources

Multi-Object Synchronization

* Conditions for its occurrence
* Solutions for avoiding and breaking deadlock

Large Programs Deadlock Definition

What happens when we try to synchronize * Resource: any (passive) thing needed by a
across multiple objects in a large program? thread to do its job (CPU, disk space, memory,

— Each object with its own lock, condition variables |0Ck)

—Is concurrency modular? — Preemptable: can be taken away by OS
Deadlock — Non-preemptable: must leave with thread
Performance * Starvation: thread waits indefinitely
Semantics/correctness * Deadlock: circular waiting for resources

— Deadlock => starvation, but not vice versa




10/17/12

Example: two locks

Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lockl.release();

Thread B

lock2.acquire();
lockl.acquire();
lockl.release();
lock2.release();

Bidirectional Bounded Buffer

Thread A

bufferl.put(data);
bufferl.put(data);

buffer2.get();
buffer2.get();

Thread B

buffer2.put(data);
buffer2.put(data);

Bufferl.get();
Bufferl.get();

Two locks and a condition variable

Thread A

lock1.acquire();

lock2.acquire();

while (need to wait)
condition.wait(lock2);

lock2.release();

lockl.release();

Thread B
lock1.acquire();
lock2.acquire();

condition.signal(lock2);
lock2.release();

lock1.release();

Yet another Example

S




10/17/12

Dining Lawyers

Each lawyer needs two chopsticks to eat.
Each grabs chopstick on the right first.

Conditions for Deadlock

Limited access to resources

— If infinite resources, no deadlock!

No preemption

— If resources are virtual, can break deadlock
Multiple independent requests

— “wait while holding”

Circular chain of requests

Circular Waiting

Thread A
waiting for Wned by

Y X

owrm‘ A;ng for
Thread B .

Solution #1: Detect and Fix

Algorithm
— Scan wait for graph
— Detect cycles
— Fix cycles
How?
— Remove one thread, reassign its resources
* Requires exception handling code to be very robust
— Roll back actions of one thread
» Databases: all actions are provisional until committed




10/17/12

Solution #2: Deadlock Prevention

Eliminate one of the four conditions for deadlock
* Lock ordering
— Always acquire locks in the same order
— Example: move file from one directory to another
— Widely used in OS kernels
* Design system to release resources and retry if need to
wait
— No “wait while holding”
— Example: telephone circuit setup
* Infinite resources?
— Ex: UNIX reserves a process for the sysadmin to run “kill”
Acquire all needed resources in advance

Solution #3: Banker’s Algorithm

Banker’s algorithm

— State maximum resource needs in advance

— Allocate resources dynamically when resource is
needed -- wait if granting request would lead to
deadlock

— Request can be granted if some sequential
ordering of threads is deadlock free

Possible System States

Unsafe Deadlock

Definitions

* Safe state:
— For any possible sequence of future resource
requests, it is possible to eventually grant all requests

— May require waiting even when resources are
available!
¢ Unsafe state:
— Some sequence of resource requests can result in
deadlock
* Doomed state:
— All possible computations lead to deadlock




10/17/12

Banker’s Algorithm

Grant request iff result is a safe state

Sum of maximum resource needs of current

threads can be greater than the total resources

— Provided there is some way for all the threads to finish
without getting into deadlock

Example: proceed iff

— total available resources - # allocated >= max
remaining that might be needed by this thread in
order to finish

— Guarantees this thread can finish

Lock-Free Data Structures

* Assume compare and swap atomic instruction

— Limitation: swap a single memory location

— Only supported on some processor architectures
* Rewrite critical section

— Create copy of data structure

— Modify copy

— Swap in pointer to copy iff no one else has

— Restart if pointer has changed

Lock-Free Bounded Buffer

get() {
do {
mine = ConsistentCopy(p);
if (mine.front == mine.last)
mine.queue.Add(self);
else {
item = mine.buf[
mine.front % size];
mine.front++;
}
while ((compare&swap(mine, p) != p);
wake up waiter if needed
return item.




