9/23/12

Introduction to Operating Systems

Tom Anderson
Adam Lerner
Will Scott

How This Course Fits in the UW CSE
Curriculum

* CSE 333: Systems Programming
— Project experience in C/C++
— How to use the operating system interface
* CSE 451: Operating Systems
— How to make a single computer work reliably
— How an operating system works internally
* CSE 452: Distributed Systems (spring 2013)

— How to make a set of computers work reliably,
despite failures of some nodes

Project: Pintos

Build an operating system

— That can boot on PC hardware

— Run a web server (and other apps)
We give you some basic building blocks
— Four assignments, that build on each other

* Threads, user programs, virtual memory, networking
— Work in groups of 2-3

First assighnment due two weeks from Thursday

Problem Sets

Four assignments spread over quarter
— Practice for exams

— Done individually

First assignment, due a week from Thursday
— Build a shell, with pipes: Is | wc

— Should be review from 333

— See Chapter 3.1-3.4 for a review
— Posted online

9/23/12

Main Points (for today)

* Operating system definition

— Software to manage a computer’s resources for its
users and applications

* OS challenges

— Reliability, security, responsiveness, portability, ...
e OS history

— How are OS X, Windows 7, and Linux related?

What is an operating system?

Users
* Software to %

m a n age a mod l oy
computer’s ™ s i orary
1]] <

resources for

File Virtual Kernel-user
its users and femer |wstem [P os oy | st
applications

v o>

: cPU
networking ¢ heduling virtual machine)

Hardware-Specific Software

Hardware
and Device Drivers

Abstraction
Layer

cpy Address
Hardware Translation
Graphics
Processor Network

Operating System Roles

* Referee:
— Resource allocation among users, applications
— Isolation of different users, applications from each other
— Communication between users, applications

* lllusionist

— Each application appears to have the entire machine to
itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport
* Glue

— Libraries, user interface widgets, ...

Thought Question

* What do you need from hardware to be able
to:
— Isolate different applications from each other?

— Isolate different users from accessing each others
files?

9/23/12

Example: web service

2.Read
1. GET index.html > -
Py >
3.Data

How does the server manage many simultaneous
client requests?

How do we keep the client safe from spyware
embedded in scripts on a web site?

How do we keep updates to the web site consistent?

OS Challenges

Reliability
— Does the system do what it was designed to do?
— Availability

* What portion of the time is the system working?

* Mean Time To Failure (MTTF), Mean Time to Repair
¢ Security

— Can the system be compromised by an attacker?
— Privacy

< Data is accessible only to authorized users
Both require very careful design and code

OS Challenges

compilers web servers

source code control

* Portability

— For programs:

databases word processing

web browsers email

* Application programming
interface (API)

* Abstract machine interface system cal
— For the operating system
* Hardware abstraction layer

* Pintos provides hardware-
specific OS kernel routines

portable
0 library

portable operating
system kernel

x86

ARM

PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802,11 a/b/g/n scsl IDE

graphics accelerators LCD screens

OS Challenges

* Performance

— Latency/response time

* How long does an operation take to complete?
— Throughput

* How many operations can be done per unit of time?
— Overhead

* How much extra work is done by the 0S?
— Fairness

* How equal is the performance received by different users?
— Predictability

* How consistent is the performance over time?

9/23/12

MVS (60%) Multics (60's)
R ~ N ~
MS/DOS (705) VS (70) UNIX (705)~
! S
1 VMware
Windaws (80's) I BSD UNIX (80's) Mach (80's)
! s S
. -
Windows Windows Free Linux NEXT MacOS
MobileNT (905)

BSD (90’5—\pres) \/

Android MacOs X

Windows 8 (2012) i0S

Influence

Descendant

Computer Performance Over Time

1981 1996 2011 factor
MIPS 1 300 10000 10K
MIPS/$ $100K $30 $0.50 200K
DRAM 128KB 128MB 10GB 100K
Disk 10MB 4GB 1TB 100K
Home Inter- 256 . . .
net 9.6 Kbps Kbps 5 Mbps 500

: 3 Mbps . _—

LAN network (shared) 10 Mbps 1 Gbps 300
Users per 100 1 <<1 100+
machine

Early Operating Systems:
Computers Very Expensive

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer
* Batch systems
— Keep CPU busy by having a queue of jobs
— 0OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems:
Computers and People Expensive

* Multiple users on computer at same time
— Multiprogramming: run multiple programs at
same time
— Interactive performance: try to complete
everyone’s tasks quickly
— As computers became cheaper, more important to
optimize for user time, not computer time

9/23/12

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Web servers
Laptops

Tablets

Virtual machines

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per
computer

Increasing numbers of computers per user
Very large scale storage

Bonus Thought Question

How should an operating system allocate
processing time between competing uses?
— Give the CPU to the first to arrive?

— To the one that needs the least resources to
complete? To the one that needs the most
resources?

— What if you need to allocate memory?

— Disk?

Textbook

Lazowska, Spring 2012: “The text is quite
sophisticated. You won't get it all on the first
pass. The right approach is to [read each
chapter before class and] re-read each chapter
once we've covered the corresponding
material... more of it will make sense then.
Don't save this re-reading until right before
the mid-term or final — keep up.”

