Lecture 8: Reader/Writer Locks

Goal: walk through an example synchronization problem, found in many operating system

kernels, that can illustrate the various aspects of locks and condition variables.
[lustrate method for writing correct synchronization code.
Problem statement:
Shared data, accessed by multiple threads. Very common in databases (e.g., at Amazon,
many more queries about books than purchases of books, so data for how many books are
left could be protected by a reader /writer lock). But also found in operating systems:
linux is converting to use RCU locks in the kernel, which are a kind of reader/writer lock.
Two classes of threads:

Readers -- never modify shared data

Writers -- read and modify shared data
Using a single lock on the data would be overly restrictive. Want:

many readers at same time

only one writer at same time
Constraints:
0. At most one writer can access data at same time - safety
1. Readers can access data when no writers (Condition okToRead) - progress
2. Writers can access data when no readers or writers (Condition okToWrite) - progress
3. Bounded waiting for writers, if each writer’s use of the data is bounded -- progress

4. Only one thread manipulates state variables at a time. - safety

Basic structure of solution

Reader

wait until no writers
access database

check out -- wake up waiting writer

Writer
wait until no readers or writers
access database

check out -- wake up waiting readers or writer

State variables:
of active readers -- AR =0
of active writers -- AW =0
of waiting readers -- WR =0
of waiting writers -- WW =0

Condition okToRead = NIL
Condition okToWrite = NIL
Lock lock = FREE

Recall: Condition variable: a queue of threads waiting for something inside a critical

section

Condition variables support three operations:

Wait() -- release lock, go to sleep, re-acquire lock

Releasing lock and going to sleep is atomic
Signal() -- wake up a waiter, if any
Broadcast() -- wake up all waiters
Code:
Reader() {

// first check self into system
lock.Acquire();

while ((AW + WW) > 0) { // check if safe to read
// if any writers, wait
WR++;
okToRead.Wait(&lock);
WR--;
}
AR++;
lock.Release();

Access DB

// check self out of system
lock.Acquire();
AR--;
if (AR == 0 && WW > 0)//if no other readers still
// active, wake up writer
okToWrite.Signal(&lock);
lock.Release();

}

Writer() { // symmetrical

// checkin

lock.Acquire();

while ((AW + AR) > 0) { // check if safe to write

// if any readers or writers, wait

WW++;
okToWrite.Wait(&lock);
WW--;
}

AW++;

lock.Release();

Access DB

// check out
lock.Acquire();

AW--;
if (WW >0) // give priority to other writers
okToWrite.Signal(&lock);
else if (WR > 0)
okToRead.Broadcast(&lock);
lock.Release();

}

Questions:

1. Can readers starve?

2. Why does checkRead need a while?

