CSE 451: Operating Systems

Lab Section: Week 9

Today

® Project 4

® More file system issues

Next week

® No office hours on Tuesday
- I’m out of town
- | will be on email

- makeup office hours after section today
(10:30 to 11:30 in the lab)

® Next week’s section is a review

- bring questions!
- or email me questions/topics in advance

Project 4

® Due next Wednesday, March 9 at | I:59pm

- in three weeks

® Questions?

Project 4

® Gotcha:

- each FCB has a pointer to its dirent (FCB.DirentOffsetWithinDirectory)
- you need to update this after sorting the dirents
- FatDefragDirectory has an example of how to do this

® Gotcha (extra credit):

- dealing with directories longer than 256 KB (0x40000 KB)

- complication is the cache manager
... deals with 256 KB at a time (called “views”)
... see Chapter || of Windows Internals

Today

® Project4

® More file system issues

Fragmentation

FAT (ideal) free cluster
]]]]]]

FFFF o] 0002 ,| 0003 ,| FFFF FFFF 0006 FFFF 0000 |
FAT (reality?) free cluster
]]]]]]

FFFF 0006 | 0005 , FFFF FFFF 0006 0003 0000

how can we optimize data block
allocation to minimize fragmentation?

Data block allocation

Say we have a sequence of writes to a file

NtOpenFile
NtWriteFile
NtWriteFile

When should we allocate data blocks?

NtWriteFile
NtCloseFile

Greedily?
- i.e., one block at a time as we need them
- problems with greedy allocation?

Data block allocation

Say we have a sequence of writes to a file

NtOpenFile
NtWriteFile
NtWriteFile

When should we allocate data blocks?
NtWriteFile
NtCloseFile

Greedily, with a pre-allocation cache
- idea: reserve a set of contiguous blocks to be allocated next
- possible implementations:
... single cache for the system
... cache per cpu
... cache per open file

Data block allocation

Say we have a sequence of writes to a file

NtOpenFile
NtWriteFile
NtWriteFile

When should we allocate data blocks?
NtWriteFile
NtCloseFile

Lazily?
- a.k.a. delayed allocation
- wait before allocating blocks (until NtCloseFile, until the cache fills up, ...)

- advantage: we can allocate blocks for the entire file, all at once

- gotcha: NtWriteFile should fail if the disk is full
(need to update “used block count” greedily, even if blocks allocated lazily)

|0

Data block allocation

How do we find a run of N contiguous blocks?
free block bitmap

P [| -
| - used

linear search?

- easy to check for some runs of 8, 16, 32, or 64 (why?)
- but still slow

buddy bitmap #1

buddy bitmap #2

Inodes

Unix FS (many other file systems roughly similar)

super freeblock | i .
vock | bumas | - nodes | . dataares
inode area Larect blocks data area
Double mdirect
Indirect blocks blocks
mode
Infos

TT— inefficient?

image courtesy of Wikipedia 12

More efficient large inodes

® new idea: extents

- extent: a contiguous region of the file represented by a contiguous
range of physical blocks on disk

® btree of extents

- replacement for indirect pointers
- used by ext4 and xfs

