
CSE 451: Operating Systems

Lab Section: Week 8

1

Today

• Project 4

• File system issues
 - disk utilization
 - consistency
 - performance

2

(I believe there is no quiz tomorrow!)

The FAT File System

3

boot
sector

FAT
(file allocation table) data area...

clusterhow big is the FAT?
how big is the data area?
how big is a cluster?
where is the root dirent (FAT32)? Goal: store files and directories!

Each cluster has one of two purposes:
 - stores data for a file
 - stores lists of files in a directory (dirents)

FAT
 - linked lists of clusters (for big files and directories)
 - which clusters are free?

The FAT File System

4

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

FAT

FFFF

Data area

name: “file1.txt”
first cluster: 1

Root dirents

name: “file2.txt”
first cluster: 4

name: “subdir”
first cluster: 5

0002 0003 FFFF

.

FFFF

.

name: “x0.txt”
first cluster: 100

subdir dirents

name: “x1.txt”
first cluster: 205

name: “x2.txt”
first cluster: 300

name: “y1.txt”
first cluster: 401

More
subdir dirents

name: “y2.txt”
first cluster: 402

name: “y3.txt”
first cluster: 403

0006 FFFF 0000

free cluster

free cluster

Project 4

5

FileName: “file1.txt”
LastWriteTime: ...
FirstClusterOfFile: 1
FileSize: 4052

Goal: keep dirents sorted in each directory
 - based on volume label (more on this in a minute)

PACKED_DIRENT (from fat.h)

SortByName

SortByTime

SortByFat
SortBySize

(actual volume labels are ALL CAPS)

SortByExt

(PACKED_DIRENT aka DIRENT)

Project 4

6

Kernel data structures: on-disk FAT (see fat.h)

PACKED_BOOT_SECTOR (you don’t need to use this)
BIOS_PARAMETER_BLOCK (you don’t need to use this: part of boot sector)
PACKED_DIRENT (aka DIRENT)

Kernel data structures: in-memory FAT (see fatstruc.h)

VCB (info about a mounted volume)
FCB / DCB (cached files / directories)

VCB Root
DCB

DCB
DCB

FCB
(open file)

...... not all files cached

Project 4

7

• You need to resort the dirents when:
- creating a new file (SortByName, SortByExt, SortByFat)
- closing a file (SortByTime, SortBySize)

• So, where do I start????
- look at FatDefragDirectory() in dirsup.c
- this compresses a dirent list by removing deleted dirents

 very similar to what you need to do
 maybe modify this? maybe call it from more places?*

• How do I get the volume label?
- use VCB→Vpb→VolumeLabel (see FatMountVolume and FatLocateVolumeLabel)

• Extra credit
- dealing with long file names

*disclaimer: I have not done the project

Project 4

8

• How do I test my kernel?
- run the test scripts in Project4/TestScripts
- look at the output

(the dir command prints dirents in the order they are on disk)

Today

• Project 4

• File system issues
 - disk utilization
 - consistency
 - performance

9

(I believe there is no quiz tomorrow!)

Disk Utilization

10

0 1 2 3 4 5 6 7

Data area

.

small files

wasted space

Say your disk was full of 1KB files ...
 - pathological, but not completely crazy
 (a typical system has many small directories and text files)

96.9% of HD is wasted!

Drive Size Cluster Size

32 MB - 64 MB 1 KB

64 MB - 128 MB 2 KB

128 MB - 256 MB 4 KB

256 MB - 512 MB 8 KB

512 MB - 1 GB 16 KB

1 GB - 2 GB 32 KB

FAT16

how big can we get?

Windows cuts off at 4GB

16-bit FAT pointers:
 driveSize = 216 · clusterSize

Disk Utilization

11

boot
sector

FAT
(file allocation table) data area...

cluster

• Big clusterSize is bad
- wasted space

• Maximum disk size supported ≈ numClusters · clusterSize
- for FAT16, numClusters = 216

- for FAT32, numClusters = 232

Drive Size Cluster Size

32 MB - 64 MB 1 KB

64 MB - 128 MB 2 KB

128 MB - 256 MB 4 KB

256 MB - 512 MB 8 KB

512 MB - 1 GB 16 KB

1 GB - 2 GB 32 KB

FAT16 (16-bit fat ptrs)

max drive size: 4GB

Drive Size Cluster Size

32 MB - 64 MB 512 bytes

64 MB - 128 MB 1 KB

128 MB - 256 MB 2 KB

256 MB - 8 GB 4 KB

8 GB - 16 GB 8 KB

16 GB - 32 GB 16 KB
max drive size: 2TB*

FAT32 (32-bit fat ptrs)

*depends on OS

Disk Utilization

12

boot
sector

FAT
(file allocation table) data area...

cluster

• Is FAT64 a good idea?
- no ... would require storing 264 64-bit entries on disk (many exobytes!)
- could just limit the number of files, but 64-bits per entry feels like a lot ...

• New idea: eliminate FAT!
- use block bitmap (one bit per entry: if bit=1, the block is free)
- store file data pointers in inodes

Disk Utilization

13

super
block

free block
bitmap

data areainodes

Unix FS (many other file systems roughly similar)

......

block size can be small (1KB is common)
number of blocks limited by size of free block bitmap

• Is FAT64 a good idea?
- no ... would require storing 264 64-bit entries on disk (many exobytes!)
- could just limit the number of files, but 64-bits per entry feels like a lot ...

• New idea: eliminate FAT!
- use block bitmap (one bit per entry: if bit=1, the block is free)
- store file data pointers in inodes

have file metadata (name, size, etc.)
point at data blocks in data area

Inodes

14

super
block

free block
bitmap

data areainodes

Unix FS (many other file systems roughly similar)

......

image courtesy of Wikipedia

inode area data area

Today

• Project 4

• File system issues
 - disk utilization
 - consistency
 - performance

15

Consistency

16

How do we create a new file?

free block
bitmap

directory: /home/tom

.bashrc .vimrc

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

inodes

Hmm ... what order do we do them in?
1

2

foo
1

2

3

3

Consistency

17

How do we create a new file?

free block
bitmap

directory: /home/tom

.bashrc .vimrc

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

inodes

Hmm ... what order do we do them in?
1

2

foo
1

2

18

Consistency

19

How do we create a new file?

free block
bitmap

.bashrc .vimrc
inodes

That block can be reused!!!
 - what if it gets allocated as a directory?
 - really bad:
 by writing to /home/tom/foo, I can
 change the metadata for another user’s
 directory!

foo

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

oops, we didn’t get to this!

directory: /home/tom

directory: /home/mark/ntfs

Consistency

20

How do we create a new file?

free block
bitmap

directory: /home/tom

.bashrc .vimrc

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

inodes

Hmm ... what order do we do them in?

2

1

1
2

21

Consistency

22

How do we create a new file?

free block
bitmap

.bashrc .vimrc
inodes

The inode has garbage!!!
 - dangling pointer

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

oops, we didn’t write the inode!

directory: /home/tom

Consistency

23

How do we create a new file?

free block
bitmap

directory: /home/tom

.bashrc .vimrc

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

inodes

Hmm ... what order do we do them in?

1

1

24

Consistency

25

How do we create a new file?

free block
bitmap

.bashrc .vimrc
inodes

Block is marked used, but not linked to!
 - this actually isn’t that bad
 - we can garbage collect the unused block
 (fsck: this takes time ...)

In some order:
 - write inode data to a free block
 - link directory to new inode
 - update bitmap

oops!

directory: /home/tom

Consistency

26

Moral of the story
 - file system consistency is hard

We wanted to do three things atomically:
 - write inode data to a free block
 - link directory to file’s inode
 - update bitmap

How?
 - transactions!

Journaling file systems

27

Add an undo log

free block
bitmap

.bashrc .vimrc
inodes

To create a new file:
 add an undo entry to the journal
 do create file operations in any order (update bitmap, add link, write inode)
 add a commit entry to the journal

directory: /home/tom

journal
foo

2

1

3

1

2 2

2

3

After a crash:
 - undo everything after the last commit entry

Today

• Project 4

• File system issues
 - disk utilization
 - consistency
 - performance

28

FAT32 performance

29

0 1 2 3 4 5 6 7

FAT (ideal)

FFFF 0002 0003 FFFF FFFF 0006 FFFF 0000

free cluster

0 1 2 3 4 5 6 7

FAT (reality?)

FFFF 0006 0005 FFFF FFFF 0006 0003 0000

free cluster

reading and writing:
many seeks

FAT32 performance

30

0 1 2 3 4 5 6 7

FAT (ideal)

FFFF 0002 0003 FFFF FFFF 0006 FFFF 0000

free cluster

0 1 2 3 4 5 6 7

FAT (reality?)

FFFF 0006 0005 FFFF FFFF 0006 0003 0000

free cluster

Fragmentation is bad!

Observed trends in HDs

31

Disk bandwith increases w/ new HDs
 - writing to the disk in large contiguous chunks is cheap, and getting cheaper
 - but seeking is still slow

Memory capacity is increasing
 - we can build large caches
 - most reads can hit the cache?
 - can coalesce small writes?

Think about FAT:
 ... to update a file, you have to update the data blocks and the FAT
 ... requires seeking (bad!)

Log-structured File Systems
(a crazy idea from 1988)

32

Make the disk one big log
(a very high level overview)

create /foo write to /foo write to /tmp/x index delete /foo . . .

write index struct at fixed offsets in the
log so you know where everything is

need to garbage collect!

Advantages:
 - writes are super fast (can coalesce, and do one big write to end-of-log)

Disadvantages:
 - complicated (when do you garbage collect?)

 - what if my read set is too big to fit in the cache?
 (LFS can actually have worse fragmentation than other file systems!)

