
CSE 451: Operating Systems

Lab Section: Week 6

1

Today

• Project 3 retrospective

• I/O scheduling: disks, flash

2

(I have no idea what’s on tomorrow’s quiz ☹)

Project 4

• Posted!

•Due Wednesday, March 9 at 11:59pm
- in three weeks

• Goal: modify the FAT filesystem
- kernel hacking! ☺
- more next week

3

Project 3

•What did your performance analysis look like?

4

 NtWriteFile()

Disk Caching

•This is what makes disk scheduling optimizations
possible

•Write caching

5

 WriteFile(&buf)

user code kernel code sometime later

disk
cache

• Read caching

 NtReadFile() ReadFile(&buf)

user code kernel code
now, or sometime earlier

disk
cache

6

P1 address space

0 264-1

physical
memory

code kernel spacefile data, stack

You can map the disk cache pages directly in user-space!
 - mmap() in unix/linux
 - called a memory mapped file
 - potentially faster for some applications (when? why?)

Memory Mapped I/O

disk cache

exists in the kernelcan be mapped in user

7

P1 address space

0 264-1

physical
memory

code kernel spacefile data, stack

What if the file is mapped writable?
How does the OS know what pages to flush to disk?
 - “dirty” bit in page table
 (set when the process writes to a page in the file)

Memory Mapped I/O

disk cache

RAID Level 0

• “Stripes” data across disks
- makes one disk look like many

8

disk 0 disk 1 disk 2 disk 3

RAID controller (HW)

visible to OS as one disk

• Advantages of putting RAID controller in HW?
- makes OS job easier

• Disadvantages?
- kernel can’t optimize!

Solid State Disks (flash)

•This is what’s on a usb stick

• Similar to disks
- data is stored in blocks

• Similar to memory
- no spinning platters ... random access is fast!
- all those disk scheduling algorithms are unnecessary
- much faster than disks (for reads...)

9

02/17/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

• Solid state drives are based on NAND flash memory
– no moving parts; performance characteristics driven by

electronics and physics – more like RAM than spinning disk
– relative technological newcomer, so costs are still quite high in

comparison to hard drives, but dropping fast

02/17/11 18

02/17/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

SSD performance: reads

• Reads
– unit of read is a page, typically 4KB large
– today’s SSD can typically handle 10,000 – 100,000 reads/s

• 0.01 – 0.1 ms read latency (50-1000x better than disk seeks)
• 40-400 MB/s read throughput (1-3x better than disk seq. thpt)

02/17/11 19

02/17/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

SSD performance: writes

• Writes
– flash media must be erased before it can be written to
– unit of erase is a block, typically 64-256 pages long

• usually takes 1-2ms to erase a block
• blocks can only be erased a certain number of times before they

become unusable – typically 10,000 – 1,000,000 times
– unit of write is a page

• writing a page can be 2-10x slower than reading a page

• Writing to an SSD is complicated
– random write to existing block: read block, erase block, write

back modified block
• leads to hard-drive like performance (300 random writes / s)

– sequential writes to erased blocks: fast!
• SSD-read like performance (100-200 MB/s)

02/17/11 20

02/17/2011 © 2010 Gribble, Lazowska, Levy, Zahorjan 13

SSDs: dealing with erases, writes

• Lots of higher-level strategies can help hide the warts
of an SSD
– many of these work by virtualizing pages and blocks on the

drive (i.e., exposing logical pages, not physical pages, to the
rest of the computer)

– wear-leveling: when writing, try to spread erases out evenly
across physical blocks of of the SSD

• Intel promises 100GB/day x 5 years for its SSD drives
– log-structured filesystems: convert random writes within a

filesystem to log appends on the SSD (more later)
– build drives out of arrays of SSDs, add lots of cache

02/17/11 21

