CSE 451: Operating Systems

Lab Section: Week 6

Today

® Project 3

® Virtual Address Spaces

- Part ll: fun virtual memory tricks

® Paging

(I have no idea what’s on tomorrow’s quiz ©)

Project 3

® Due Wednesday, Feb 16 at | |:59pm

- next week!

® Questions!

A rant on code optimization

“premature optimization is the
root of all evil”
- Donald Knuth

® Write the simple version first

- the proﬁle (this tells you where time is spent)
- then optimize

® You don’t need to super optimize every line of
code!

“Numbers every engineer should know”
(from Jeff Dean, Google)

Simple instruction <I| ns

o g LI cache reference <| ns
g §- Main memory reference 100 ns
£ £ Mutex lock/unlock 100 ns
- Compress |Kb of data 10,000 ns
Send 2Kb over local network 20,000 ns

.E - Read |Mb sequentially from flash drive 5,000,000 ns
£ ¥ Read IMb sequentially from network 10,000,000 ns
£ 2 Disk seek (random access) 10,000,000 ns
8_ o Read | Mb sequentially from disk 30,000,000 ns
§ Send packet CA—Netherlands— CA 250,000,000 ns

flash numbers added by me 5

Hard disk geometry

(what is a seek?)

track

arm

cylinder

platter heads

seek: moving the arm

from a future lecture slide 6

Today

® Project3

® Virtual Address Spaces

- Part ll: fun virtual memory tricks

® Paging

Virtual Address Spaces

(review)

P, address space

physical
memory

=

=

user space kernel space
0 264
page
"""" table
page
"""" table
P, address space
user space kernel space
0 264-]

Virtual Address Spaces

(review)
P, address space
user space kernel space
0 264- |
page table
Virtual | Physical | Protect
Address|Address| Bits
""""""" 0x004Iab... v user
L) Oxfffff.... X user
P, address space
user space kernel space
0 264- |

physical
memory

Page table protection bits

® user bit

- we just saw this
- used to hide kernel pages from user programs

® present bit

- is there a physical page allocated for this virtual address!?

® writable bit

- is the page writable!?
- when unset, the page is read-only (we’ll see this in a bit)

® What if a protection bit is violated!?

- hardware triggers a page fault
- OS decides what to do

VM trick (I): NULL pointers

physical
P, address space memory

ode data, stack kernel space

0* 264-

Goal: segfault on (*p) when (p=NULL)

How?
bevemreneannes - use a null page!

- marked not present in the page table

VM trick (2): sharing

P, address space

user space kernel space
0 264
does sharing pages are
make sense? shared
P, address space
user space kernel space
0 264

physical
memory

VM trick (2): sharing

P, address space

code

DLL

data, stack

kernel space

A shared library:

Problem: can’t let P> write to P,’s DLL!

P, address space

264-

- share code pages in multiple address spaces

(saves space!)

- solution: map pages read-only

code

DLL

data, stack

kernel space

264- |

physical
memory

VM trick (2): sharing

P, address space

code DLL data, stack kernel space
' 64_
0 page table 2
Virtual | Physical Protect
. Address | Address Bits
: pages mapped read—only
""""""""""""""""" 0x0041ab... v user X writable
page table
Virtual | Physical Protect
Address | Address Bits
_____ 7 OxO7eff.. v user X writable
P2 address space..--~"
code DLL data, stack kernel space

264- |

physical
memory

s*»'

VM trick (2): sharing

P, address space

code DLL data, stack kernel space
0 : 764_|
v X
Ox0AQ call foo Ox3FC memcpy:

How do we know the address of

0x105 foo: memcpy?
call memcpy

- it depends on where the DLL was loaded!

- solution: jump table

0xB0O5 memcpy:

A

P> address space

code DLL data, stack kernel space

0 264_|

VM trick (2): sharing

P, address space

code data, stack kernel space
0 ! 264 |

A\

Ox0AOQ call foo

Ox 105 foo:
call YjumpTable[42] | |Ljbrary call indirects through jump table

jumpTable = {

[0] =
[1]1=? Jump table initially empty
[42] =?

}

VM trick (2): sharing

P, address space

code DLL data, stack kernel space
0o : T 264. |
o .
Ox0AQ call foo Ox3FC memcpy:
0x105 foo:

call *jumpTable[42]

jumpTable = {
e Jump table fixed when DLL is loaded
ot - by a program called a loader
[42] = &memcpy, <«
: Ox3FC

VM trick (3): fast system calls

physical
P, address space memory

user space kernel space

0 264-

Fast GetTime() syscall
- kernel writes current time to a special page

- mapped writable in kernel space

- mapped read-only in all processes

kernel writes time

- o

user reads time

- -
‘‘‘‘‘

P, address space

user space kernel space

0 264_|

VM trick (4): fork

physical
P, address space memory
user space kernel space
0 26%- | % copy
The UNIX fork() syscall £
r = fork() // spbawns a new process
/I as a copy of this one
if (r > 0) ‘
/I in the parent (P)) copy
else if (r == 0) ;
/I in the child (Py) &
P, address space
user space (copy of P)) kernel space
0 264-]

VM trick (4): fork

P, address space

COpYy-on-write

user space

kernel space

P, address space

264-

Efficient fork() via copy-on-write
- copy all page table mappings

- mark read-only in both processes

- lazy copy

On P2 write:
- page fault
- copy the page, mark writable

4

user space

kernel space

264-]
20

physical
memory

VM trick (4): fork

COpYy-on-write

physical
P, address space memory

user space kernel space

0 " 264-

On P, write:
- page fault

- only reference left!
(P2 has a private copy now)

- just mark writable

P, address space

user space kernel space

0 264_|
21

More VM tricks please!

See this excellent paper by Andrew Appel and Kai Li
“Virtual Memory Primitives for User Programs” (ASPLOS 1991)

- garbage collection, distributed shared memory, more ...

Check out Emery Berger’s work

Professor at UMASS
has made a career out of inventing VM tricks (among other things)

22

23

Paging

® What if we need more pages than available in physical

memory!
- page to disk

® |sn’t this slow?
- yes!
- but processes have locality

24

Working Set

>
v time

working set window
® W(t, w)
- set of pages used in time [t-w, t]

® This is usually a small-ish subset of memory
- demonstrated empirically

® |deally: keep the working set in memory
- page out everything else
- see lecture slides for algorithms

25

Paging

® Jocal page replacement

P|—ﬁH I

on P2 page fault: swap out a page from Py’s memory

ﬂﬂﬂﬂﬂ
P

S "

pages resident pages swapped
in memory to disk

(fixed quota per process)

26

Paging

® global page replacement

P
N

e

P>

on page fault: swap out any page to memory

-___-------._..

- L
- ~
- ~

pages resident
In memory

27

pages swapped
to disk

Paging

® Jocal page replacement

- fixed quota per process
- why bad?
- not globally optimal
- e.g.: foreground tasks should get more pages

® global page replacement

- No quotas
- why bad!?

- more variability, possibility for unfairness

28

Working set

® When is the working set the entire program?
- garbage collection! (mark-and-sweep...)
- Java performance tanks when paging to disk

29

