
CSE 451: Operating Systems

Lab Section: Week 6

1

Today

• Project 3

• Virtual Address Spaces
 - Part II: fun virtual memory tricks

• Paging

2

(I have no idea what’s on tomorrow’s quiz ☹)

Project 3

•Due Wednesday, Feb 16 at 11:59pm
- next week!

•Questions?

3

A rant on code optimization

•Write the simple version first
- the profile (this tells you where time is spent)

- then optimize

• You don’t need to super optimize every line of
code!

4

“premature optimization is the
root of all evil”

- Donald Knuth

“Numbers every engineer should know”
(from Jeff Dean, Google)

5flash numbers added by me

Simple instruction <1 ns

L1 cache reference <1 ns

Main memory reference 100 ns

Mutex lock/unlock 100 ns

Compress 1Kb of data 10,000 ns

Send 2Kb over local network 20,000 ns

Read 1Mb sequentially from flash drive 5,000,000 ns

Read 1Mb sequentially from network 10,000,000 ns

Disk seek (random access) 10,000,000 ns

Read 1 Mb sequentially from disk 30,000,000 ns

Send packet CA→Netherlands→CA 250,000,000 nsim
p

o
rt

a
n

t
 f

o
r

P
ro

je
ct

 3
n

o
t

 s
o

im
p

o
rt

a
n

t

Hard disk geometry
(what is a seek?)

6

platter

cylinder

track

arm

heads

seek: moving the arm

from a future lecture slide

Today

• Project 3

• Virtual Address Spaces
 - Part II: fun virtual memory tricks

• Paging

7

page
table

Virtual Address Spaces
(review)

8

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

page
table

Virtual Address Spaces
(review)

9

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

page table
Virtual

Address
Physical
Address

Protect
Bits

0x0041ab... ✔ user

0xfffff.... ✘ user

Page table protection bits

10

•user bit
 - we just saw this
 - used to hide kernel pages from user programs

•present bit
 - is there a physical page allocated for this virtual address?

•writable bit
 - is the page writable?
 - when unset, the page is read-only (we’ll see this in a bit)

•What if a protection bit is violated?
 - hardware triggers a page fault
 - OS decides what to do

VM trick (1): NULL pointers

11

P1 address space

0 264-1

physical
memory

kernel spacedata, stack

Goal: segfault on (*p) when (p=NULL)

How?
 - use a null page!
 - marked not present in the page table

code

VM trick (2): sharing

12

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

pages are
shared

does sharing
make sense?

13

P1 address space

0 264-1

physical
memory

code kernel space

P2 address space

0 264-1
code kernel spaceDLL

DLL data, stack

data, stack

A shared library:
 - share code pages in multiple address spaces
 (saves space!)

Problem: can’t let P2 write to P1’s DLL!
 - solution: map pages read-only

VM trick (2): sharing

14

P1 address space

0 264-1

physical
memory

code kernel space

P2 address space

0 264-1
code kernel spaceDLL

DLL data, stack

data, stack

page table
Virtual

Address
Physical
Address

Protect
Bits

0x0041ab... ✔ user ✘ writable
pages mapped read-only

Virtual
Address

Physical
Address

Protect
Bits

0x07eff... ✔ user ✘ writable

page table

VM trick (2): sharing

15

P1 address space

0 264-1
code kernel spaceDLL data, stack

 ⋮
0x3FC memcpy:
 ⋮

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call memcpy
 ⋮

How do we know the address of
memcpy?
 - it depends on where the DLL was loaded!
 - solution: jump table

P2 address space

0 264-1
code kernel spaceDLL data, stack

 ⋮
0xB05 memcpy:
 ⋮

VM trick (2): sharing

16

P1 address space

0 264-1
code kernel spacedata, stack

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call *jumpTable[42]
 ⋮

Jump table initially empty

Library call indirects through jump table

 jumpTable = {
 [0] = ?
 [1] = ?
 ⋮
 [42] = ?
 ⋮
 }

VM trick (2): sharing

17

P1 address space

0 264-1
code kernel spaceDLL data, stack

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call *jumpTable[42]
 ⋮

 jumpTable = {
 [0] = ?
 [1] = ?
 ⋮
 [42] = &memcpy,
 ⋮ 0x3FC
 }

 ⋮
0x3FC memcpy:
 ⋮

Jump table fixed when DLL is loaded
 - by a program called a loader

VM trick (2): sharing

VM trick (3): fast system calls

18

physical
memoryP1 address space

0 264-1
user space kernel space

P2 address space

0 264-1
user space kernel space

Fast GetTime() syscall
 - kernel writes current time to a special page
 - mapped writable in kernel space
 - mapped read-only in all processes

kernel writes timeuser reads time

VM trick (4): fork

19

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space (copy of P1) kernel space

 r = fork() // spawns a new process
 // as a copy of this one
 if (r > 0)
 // in the parent (P1)
 else if (r == 0)
 // in the child (P2)

The UNIX fork() syscall

copy

copy

VM trick (4): fork
copy-on-write

20

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

Efficient fork() via copy-on-write
 - copy all page table mappings
 - mark read-only in both processes
 - lazy copy

On P2 write:
 - page fault
 - copy the page, mark writable

VM trick (4): fork
copy-on-write

21

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

On P1 write:
 - page fault
 - only reference left!
 (P2 has a private copy now)

 - just mark writable

More VM tricks please!

22

See this excellent paper by Andrew Appel and Kai Li
 “Virtual Memory Primitives for User Programs” (ASPLOS 1991)
 - garbage collection, distributed shared memory, more ...

Check out Emery Berger’s work
 Professor at UMASS
 has made a career out of inventing VM tricks (among other things)

Today

• Project 3

• Virtual Address Spaces
 - Part II: fun virtual memory tricks

• Paging

23

Paging

24

• What if we need more pages than available in physical
memory?

- page to disk

• Isn’t this slow?
- yes!
- but processes have locality

Working Set

25

• W(t, w)
- set of pages used in time [t-w, t]

• This is usually a small-ish subset of memory
- demonstrated empirically

• Ideally: keep the working set in memory
- page out everything else
- see lecture slides for algorithms

time

}

working set window

Paging

26

• local page replacement

P2

pages resident
in memory

pages swapped
to disk

P1

on P2 page fault: swap out a page from P2’s memory

(fixed quota per process)

Paging

27

• global page replacement

P2 pages resident
in memory

pages swapped
to disk

P1 on page fault: swap out any page to memory

Paging

28

• local page replacement
- fixed quota per process
- why bad?

 - not globally optimal
 - e.g.: foreground tasks should get more pages

• global page replacement
- no quotas
- why bad?

 - more variability, possibility for unfairness

Working set

29

• When is the working set the entire program?
- garbage collection! (mark-and-sweep...)

- Java performance tanks when paging to disk

