CSE 451: Operating Systems

Lab Section: Week 5

Today

® Project 3
® Virtual Address Spaces

® Deadlock

(this may be useful for tomorrow’s quiz©)

Project 3

® Due Wednesday, Feb 16 at | |:59pm

® You can work in pairs
- use discussion board to find a partner

Project 3

® File copy program
- implement entirely in user-space

source
files

® Three parts

- implement MtFileCopy

/\‘T

destination
files

(multithreaded)

- implement MtFileCopyAsync (single-threaded)
- performance analysis

Project 3

file| fileq files @
source files 4
filez — ‘ Thread, ‘
_ +
/»‘ Thread; ‘
files |
i ‘ Threads ‘
|
MtFileCopy(ThreadCount=3, BufferSize=4096, files ..)

(1) Break files into chunks of work (use chunkSize == BufferSize)

@ Schedule chunks to threads (each thread copies one chunk at a time)

Project 3

ﬁ|e| ﬁ|e4 ﬁIGS
source files files Tt ‘ Thread, ‘
—/‘ Thread, ‘
files — ‘ ‘
7 Thread;s
,// ?

® What goes into an efficient schedule!?
- load balancing (keep threads busy)
- locality

.. assign threads to different files!? | don’t know which is better!
..._have threads gang up on the same file? That’s why we run experiments

Project 3

ﬁ|e| ﬁ|e4 ﬁIGS
source files files Tt ‘ Thread, ‘
—/,‘ Thread, ‘
files — ‘ ‘
7 Thread;s
,// ?

® Scheduling approaches
- build a schedule up-front (doesn’t respond well to performance glitches?)
- put chunks in a FIFO queue
- work stealing (a cool idea! ask google for more)

Project 3

(async version)

file files files
~ async
source files e \@\
ﬁ|e3 \
[~
Thread,

MtFileCopyAsync(BufferCount=3, BufferSize=4096, files

Same idea! Except ...
.... we have just one thread
... that thread does 3 asynchronous chunk copies at once

What experiments could | run?

(these are just examples: you can do more!)

® Select some diverse inputs sets

. big files many files using network drives
small files few files using local hard drives
using usb drives

® Time your program on each input set

- use different values for /T and /B
- use sync and async

® Analyze:

- what is the best configuration?
- what is the worst configuration?
- make graphs

run time

of threads
with /B=4096

Today

® Project3
® Virtual Address Spaces

® Deadlock

(this may be useful for tomorrow’s quiz©)

user space

Virtual Address Spaces

Process Process
threads = memory threads memory

kernel space

NtReadFile(void* userbuf) {

CSEA45 | .readcalls++;

system call kernel memory

® Wait, if pointers are just numbers ...

now does each process get a private memory space!
now does the kernel get a private memory space?

now does the kernel access process memory!?

Virtual Address Spaces

here is a pointer
P:| 0x0041ab8fe023ecd5

process address space

264-

264- |

Virtual Address Spaces

here is a pointer

P:| 0x004 |ab8fe023ecd5

process address space

page table

Virtual
Address

Physical
Address

0x004 1 ab...

264-

“
L d
-
‘4
-

“
-
-
‘4
-

physical
memory

Virtual Address Spaces

P, address space

code DLL data stack physical
0 264 memory
: page
"""" >| table >
On context switch:
- install page table for the
new process in hw
(on x86: write pointer to %cr3 register)
page
p > table >
P2 address space :
code DLL data stack
0 264

Virtual Address Spaces

® Great, that explains how processes are isolated

® What about the kernel?

- how does the kernel get a private memory space!
- how does the kernel access user memory!?

NtReadFile(void* userbuf) {

CSEA45 | .readcalls++;

Virtual Address Spaces

(what about the kernel?)

P, address space

user space

kernel space

P, address space

page
table

page
table

264-

physical
memory

=

=

user space

kernel space

264- |

Virtual Address Spaces

(what about the kernel?)

P, address space

user space

kernel space

® Kernel and user share the address space

page
table

264-

physical
memory

=

- don’t need to install a new page table when entering the kernel
- this is how system calls‘access user space

NtReadFile(void* userbuf) {

CSE45 | .readcalls++;

system call

Virtual Address Spaces

P, address space

(what about the kernel?)

user space

kernel space

® How is the kernel isolated from the user?

page
table

264-

physical
memory

=

Virtual Address Spaces

(what about the kernel?)

P, address space

user space

kernel space

264
page table
Virtual | Physical | Protect
Address | Address| Bits
0x0041ab... v user
OX(fffff.... X user

® How is the kernel isolated from the user?

- set protection bits in the page table:

hw triggers a page fault if user code tries to access kernel memory

physical
memory

Virtual Address Spaces

P, address space

user space kernel space

0 264

® So user and kernel share the address space. Great!
What could possibly go wrong?

NtReadFile(void* userbuf, . —
int userlen) ® What if userbuf is invalid?

{ e.s. NULL or
points at an unmapped page
memcpy(userbuf,

FileData,

o i v
FileDataSize) The kernel will segfault!

20

Virtual Address Spaces

P, address space

user space kernel space

0 264
oops!

® So user and kernel share the address space. Great!
What could possibly go wrong?

NtReadFile(void* userbuf,
int userlen)

® What if userbuf points into

{ kernel space?
e.g. malicious user code “guesses”
memcpy(userbuf, a pointer value
FileData,

FileDataSize); ® The kernel data structures will

be corrupted!

21

Always always always validate
user pointers in the kernel

® Check that user pointers point at user memory, not kernel memory

user space

user buffer

kernel space

bad!

Windows

ProbeForWrite(userbuf, length);

Linux

access_ok(userbuf, length);

® Guard kernel code that accesses user pointers against segfaults

try {
memcpy(userbuf,

FileData,
FileDatalen);
} except {
x = GetExceptionCode();
... 1 oops, handle segfault

}

Windows

http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2

Linux

copy_to_user(userbuf,
FileData,
FileDatalLen);
Il copy_to_user deals with
Il a segfault if it happens

http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2
http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2

Always always always validate
user pointers in the kernel

® An example from Project 2:

NtQuerySystemInformation(Cse45 I’* info, ...)

{

Il copy event buffer to user space
memcpy(info->buffer, CseEventBuffer, info->bufferSize);

-

23

Always always always validate
user pointers in the kernel

® An example from Project 2.
Added a fix. Is this enough? What could go wrong!?

NtQuerySystemInformation(Cse45|* info, ...)

{

ProbeForWrite(info->buffer, info->bufferSize);

try {
memcpy(info->buffer, CseEventBuffer, info->bufferSize);

} except {

24

Always always always validate
user pointers in the kernel

® An example from Project 2.
Added a fix. Is this enough? What could go wrong!?

NtQuerySystemInformation(Cse45 I’* info, ...)

{
What if another thread '

. ProbeForWrite(info->buffer, info->bufferSize);
changes info->buffer #y{
after ProbeForVVrite and memcpy(info->buffer, CseEventBuffer, info->bufferSize);

before memcpy? except {
oops! |!
Buggy user Thread, Thread;
code example NtQuerySystemInformation(info); info->buffer = Oxfff.....

75 (a kernel address)

Always always always validate
user pointers in the kernel

® An example from Project 2.
The full fix:

NtQuerySystemInformation(Cse45|* info, ...)

{

t tmpBuffer = info->buffer; // capture pointer
capture tmpSize = info->bufferSize;

ProbeForWrite(tmpBuffer; tmpSize);
try {

memcpy(tmpBuffer, CseEventBuffer, tmpSize);
} except {

26

Today

® Project3
® VirtualAddress-Spaces

® Deadlock

(this may be useful for tomorrow’s quiz©)

27

What is deadlock!?

Deadlock is an irreducible circular dependence.

That’s it.

28

P1

stolen from lecture slides

Spot the

R1

P2

deadlock!

29

—» R1 Is held by
- -9 |s walting for R1
—» R2 s held by
- -3 |s walting for R2

Spot the deadlock!

circle = process
square = resource
arrow = dependence

No deadlock!

P2 can release R
... allowing Pl to acquire R
... breaking the cycle

stolen from lecture slides 30

Spot the deadlock!

circle = process
square = resource
arrow = dependence

stolen from lecture slides 31

Spot the deadlock!

Thread, Thread;
foo() { bar() {
Iockg &A 2; Iockg &B 2;

lock(&B); lock(&A);

32

Spot the deadlock!

Thread,

foo() {
lock(&A);

while (true) {
x = ReadFromPipe();

break;

J
unlock(&A);

33

Thread

bar() {
lock(&A);

Write ToPipe(42);

unlock(&A);

Spot the deadlock!

TransferMoney(account A, account B, int amount)

{
lock(&A.lock);

lock(&B.lock);

/]

/I transfer the money
/]

unlock(&B.lock);
unlock(&A.lock);

Thread,

TransferMoney(A, B, x);

34

Thread;

TransferMoney(B, A, x);

