
CSE 451: Operating Systems

Lab Section:  Week 5

1



Today

• Project 3

• Virtual Address Spaces

•Deadlock
(this may be useful for tomorrow’s quiz☺)

2



Project 3

•Due Wednesday, Feb 16 at 11:59pm

• You can work in pairs
- use discussion board to find a partner

3



Project 3

• File copy program
- implement entirely in user-space

• Three parts
- implement MtFileCopy           (multithreaded)
- implement MtFileCopyAsync  (single-threaded)
- performance analysis

4

source
files

destination
files



Project 3

5

source files

file1 file4 file5

file3

file2

1 Break files into chunks of work (use chunkSize == BufferSize)

MtFileCopy( ThreadCount=3, BufferSize=4096, files .. )

2 Schedule chunks to threads (each thread copies one chunk at a time)

1

2

Thread1

Thread2

Thread3



Project 3

6

source files

file1 file4 file5

file3

file2 Thread1

Thread2

Thread3

• What goes into an efficient schedule?
- load balancing (keep threads busy)
- locality

    ...  assign threads to different files?
    ...  have threads gang up on the same file?

?

I don’t know which is better!
That’s why we run experiments}



Project 3

7

source files

file1 file4 file5

file3

file2 Thread1

Thread2

Thread3

• Scheduling approaches
- build a schedule up-front (doesn’t respond well to performance glitches?)

- put chunks in a FIFO queue
- work stealing (a cool idea! ask google for more)

. . .

?



Project 3
(async version)

8

source files

file1 file4 file5

file3

file2

MtFileCopyAsync( BufferCount=3, BufferSize=4096, files .. )

Same idea!  Except ...
   .... we have just one thread
   .... that thread does 3 asynchronous chunk copies at once

Thread1

async
reads



What experiments could I run?
(these are just examples: you can do more!)

• Select some diverse inputs sets
      ...   big files      many files     using network drives
           small files   few files       using local hard drives
                                               using usb drives

• Time your program on each input set
- use different values for /T and /B
- use sync and async

• Analyze:
- what is the best configuration?
- what is the worst configuration?
- make graphs

9
ru

n 
tim

e

# of threads
with /B=4096

example



Today

• Project 3

• Virtual Address Spaces

•Deadlock
(this may be useful for tomorrow’s quiz☺)

10



Virtual Address Spaces

11

user space

kernel space

kernel memorysystem call

• Wait, if pointers are just numbers ...
- how does each process get a private memory space?
- how does the kernel get a private memory space?
- how does the kernel access process memory?

memory

Process

threads memory

Process

threads

NtReadFile(void* userbuf) {
     ...
     CSE451.readcalls++;
     ...



Virtual Address Spaces

12

here is a pointer
0x0041ab8fe023ecd5p:

process address space

0 264-1

physical memory

0 264-1

?



Virtual Address Spaces

13

here is a pointer
0x0041ab8fe023ecd5p:

process address space

0 264-1

physical
memory

page table

Virtual
Address

Physical
Address

0x0041ab...



page 
table 

Virtual Address Spaces

14

P1 address space

0 264-1
data physical

memory

stack

P2 address space

0 264-1
data stack

page 
table 

code

code

DLL

DLL

On context switch:
    - install page table for the
      new process in hw
      (on x86: write pointer to %cr3 register)



Virtual Address Spaces

15

• Great, that explains how processes are isolated

• What about the kernel?
- how does the kernel get a private memory space?
- how does the kernel access user memory?

NtReadFile(void* userbuf) {
     ...
     CSE451.readcalls++;
     ...



page 
table 

Virtual Address Spaces
(what about the kernel?)

16

P1 address space

0 264-1

physical
memory

user space kernel space

P2 address space

0 264-1
user space kernel space

page 
table 



NtReadFile(void* userbuf) {
     ...
     CSE451.readcalls++;
     ...

page 
table 

Virtual Address Spaces
(what about the kernel?)

17

P1 address space

0 264-1

physical
memory

user space kernel space

• Kernel and user share the address space
- don’t need to install a new page table when entering the kernel
- this is how system calls access user space

system call



Virtual Address Spaces
(what about the kernel?)

18

P1 address space

0 264-1

physical
memory

user space kernel space

• How is the kernel isolated from the user?

page 
table 



Virtual Address Spaces
(what about the kernel?)

19

P1 address space

0 264-1

physical
memory

user space kernel space

• How is the kernel isolated from the user?
- set protection bits in the page table:

hw triggers a page fault if user code tries to access kernel memory

page table
Virtual

Address
Physical
Address

Protect
Bits

0x0041ab... ✔ user

0xfffff.... ✘ user



20

P1 address space

0 264-1
user space kernel space

NtReadFile(void* userbuf,
                 int     userlen)
{
     ...
     memcpy( userbuf,
                   FileData,
                   FileDataSize );

• So user and kernel share the address space.  Great!
What could possibly go wrong?

Virtual Address Spaces

• What if userbuf is invalid?
      e.g.  NULL or
             points at an unmapped page

• The kernel will segfault!



21

P1 address space

0 264-1
user space kernel space

Virtual Address Spaces

• What if userbuf points into 
kernel space?
      e.g.  malicious user code “guesses”
             a pointer value

• The kernel data structures will 
be corrupted!

NtReadFile(void* userbuf,
                 int     userlen)
{
     ...
     memcpy( userbuf,
                   FileData,
                   FileDataSize );

• So user and kernel share the address space.  Great!
What could possibly go wrong?

oops!



22

Always always always validate 
user pointers in the kernel

• Check that user pointers point at user memory, not kernel memory

• Guard kernel code that accesses user pointers against segfaults

user space kernel space
user buffer

bad!

  try {
     memcpy( userbuf,
                    FileData,
                    FileDataLen );
  } except {
     x = GetExceptionCode();
     ...  // oops, handle segfault
  }

  copy_to_user( userbuf,
                        FileData,
                        FileDataLen );
    // copy_to_user deals with
    // a segfault if it happens

Windows
Linux

  ProbeForWrite( userbuf, length );

Windows Linux
  access_ok( userbuf, length );

http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2

http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2
http://msdn.microsoft.com/en-us/library/ms809962.aspx#drvrreliab_topic2


Always always always validate 
user pointers in the kernel

• An example from Project 2:

 NtQuerySystemInformation( Cse451* info, ... )
 {
     ....
     // copy event buffer to user space
     memcpy( info->buffer,  CseEventBuffer,  info->bufferSize );
     ....
 }

23



Always always always validate 
user pointers in the kernel

• An example from Project 2.
Added a fix.  Is this enough?  What could go wrong?

 NtQuerySystemInformation( Cse451* info, ... )
 {
     ....
     ProbeForWrite( info->buffer,  info->bufferSize );
     try {
         memcpy( info->buffer,  CseEventBuffer,  info->bufferSize );
     } except {
        ....
 }

24



Always always always validate 
user pointers in the kernel

• An example from Project 2.
Added a fix.  Is this enough?  What could go wrong?

 NtQuerySystemInformation( Cse451* info, ... )
 {
     ....
     ProbeForWrite( info->buffer,  info->bufferSize );
     try {
         memcpy( info->buffer,  CseEventBuffer,  info->bufferSize );
     } except {
        ....
 }

What if another thread 
changes info->buffer

after ProbeForWrite and 
before memcpy?

oops!

25

Thread2

  info->buffer = 0xfff....; NtQuerySystemInformation(info);

Thread1Buggy user 
code example

(a kernel address)



Always always always validate 
user pointers in the kernel

• An example from Project 2.
The full fix:

 NtQuerySystemInformation( Cse451* info, ... )
 {
     ....
     tmpBuffer = info->buffer;   // capture pointer
     tmpSize     = info->bufferSize;
     ....
     ProbeForWrite( tmpBuffer,  tmpSize );
     try {
         memcpy( tmpBuffer,  CseEventBuffer,  tmpSize );
     } except {
        ....
 }

26

capture



Today

• Project 3

• Virtual Address Spaces

•Deadlock
(this may be useful for tomorrow’s quiz☺)

27



What is deadlock?

28

Deadlock is an irreducible circular dependence.

That’s it.



Spot the deadlock!

29stolen from lecture slides



Spot the deadlock!

30stolen from lecture slides

circle = process
square = resource

     arrow = dependence

No deadlock!
P2 can release R1
... allowing P1 to acquire R1
... breaking the cycle

✘

✘



Spot the deadlock!

31stolen from lecture slides

circle = process
square = resource

     arrow = dependence



Spot the deadlock!

32

 foo() {
     lock( &A );
     lock( &B );
     ....

Thread1

 bar() {
     lock( &B );
     lock( &A );
     ....

Thread2



Spot the deadlock!

33

 foo() {
     lock( &A );
     ....
     while (true) {
         x = ReadFromPipe();
         if (x == 42)
             break;
     }
     unlock( &A );
     ....

Thread1

 bar() {
     lock( &A );
     ....
     WriteToPipe(42);
     ....
     unlock( &A );
     ....

Thread2



Spot the deadlock!

34

 TransferMoney(account A,  account B,  int amount)
 {
     lock( &A.lock );
     lock( &B.lock );
     //
     // transfer the money
     //
     unlock( &B.lock );
     unlock( &A.lock );
}

 TransferMoney(A, B, x);

Thread1

 TransferMoney(B, A, x);

Thread2


