
CSE 451: Operating Systems

Lab Section:  Week 4
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Today

• Project 3

• Synchronization
(this may be useful for tomorrow’s quiz☺)
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Reminder ...

• Project 1 due last night!
- dropbox is closed

• Project 2 due last night!
- but you can submit late
- late penalty is 0.5 grade points per day (I think ...)
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Project 3

• File copy program
- implement entirely in user-space (no kernel hacking ☹)

• Three parts
- implement using multithreading + synchronous I/O
- implement using single-threading + asynchronous I/O
- analyze the performance of both implementations

(more on this next week)
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destination
files



I/O in Windows
• Synchronous
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  ....
  ReadFile(&buf)

  ....

 NtReadFile() {
   submit request
   wait for signal
 }

I/O Driver
   - writes to &buf
   - notifies when done

user code kernel code

• Asynchronous

  ....
  ev = CreateEvent()
  ReadFile(&buf, ev)
       // kernel fills buf
  ....  // concurrently with this
       // code
  WaitForSingleObject(ev)

 ....

 NtReadFile() {
   submit request
 }

I/O Driver
   - writes to &buf
   - notifies “ev” when done

user code kernel code

 NtWaitForSingleObject() {
    wait for signal
 }



I/O in Windows
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•Advantages of sync I/O?
- easier to program

(don’t have to explicitly synchronize with I/O driver)

• Advantages of async I/O?
- more efficient, potentially

(you can “overlap” work with the I/O request)

• How do we make sync I/O go faster?
- use more threads!



Project 3
Multithreaded + Synchronous I/O
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source files

destination
files

buffer

Thread 1

buffer

Thread 2

buffer

Thread 3

ReadFile()

WriteFile()

ReadFile() ReadFile()

WriteFile() WriteFile()



Project 3
Single-threaded + Asynchronous I/O
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source files

destination
files

buffer

Thread 1

ReadFile()

WriteFile()

buffer buffer

(in progress) (done!)

WaitForMultipleObjects( [ev1, ev2, ev3] )

ReadFile()
(in progress)

ReadFile()
(in progress)

(in progress)

(done!)

WriteFile()
(in progress)



Today

• Project 3

• Synchronization
(this may be useful for tomorrow’s quiz☺)
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Why do we need synchronization?

• Safe data sharing
- bank account example:
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  withdraw(account, value) {
      balance = get_balance(account)
      balance -= value
      put_balance(account, balance)
  }

  withdraw(account, value) {
      balance = get_balance(account)
      balance -= value

      put_balance(account, balance)
  }

oops!

cpu1 cpu2



Why do we need synchronization on 
single-processor computers?

• Preemption

11

  withdraw(account, value) {
      balance = get_balance(account)
      ....

  withdraw(account, value) {
      balance = get_balance(account)
      balance -= value context

switch

• Interrupts

user space

kernel space
 system call  handler

hw interrupt

context switch



Type of synchronization
(we’ll talk about these today)

• Locks / Mutexes

• Semaphores

• Condition variables

•Monitors (= mutexes + condition variables)
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Locks / Mutexes
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•MUTual EXclusion
- lock / acquire
- unlock / release

• Spinlocks
- acquire: busy wait (spin) until the lock is released

• Blocking / queueing mutexes

Mutex
            held?
              yesT1,  T5,  T3

waiters (threads)



Semaphores
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•Operations
- P (or more sanely: down / wait)
- V (or more sanely: up / signal)

Sem
 free resources
             T3..

waiters (threads)

  T1: down(sem)

  T2: down(sem)
  T2: down(sem)

  T3: down(sem)

  T2: up(sem)

  T1:

  T2:

• Binary semaphore
- initial count = 1
- same as a mutex

  T3:



Semaphores
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•What are counting semaphores good for?
- resource allocation!

• Example:  memory allocation w/ quotas
- sem.count initialized to the memory quota in bytes
- on malloc(n):  call down(sem, n)
- on corresponding free():  call up(sem, n)

• Example:  RPC windowing
- want no more than n RPCs outstanding at any time
- sem.count initialized to n

• Example:  bounded buffer
- see lecture slides ....



Problems with semaphores (and locks)
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•No connection between lock and the data it 
guards

• Easy to:
- forget to acquire a lock
- forget to release a lock
- use the wrong lock



Monitors
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• A programming language construct
- synchronization code added by the compiler

• Essentially a class
- shared private data
- methods
- automatic synchronization



A monitor
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shared data

operations (methods)

wait queue of threads
trying to enter the monitor

at most one thread
in monitor at a

time



  Put()

  Get()

Monitor example:  a workqueue
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waiting threads



  Put()

  Get()

Monitor example:  a workqueue
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waiting threads

• Queue is empty
• Now what?



  Put()

  Get()

Monitor example:  a workqueue
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waiting threads

• Queue is empty
• Now what?

waiting threads

signal

condition variable



Condition Variables
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• wait(c)
- release monitor lock
- wait for a signal
- then recapture monitor lock

• signal(c)
- wake up at most one waiting thread
- if no waiting threads, signal is lost!

• broadcast(c)
- wake up all waiting threads



Workqueue pseudocode
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Monitor  {
        Queue      q
        Condition  notEmpty

        put(w) {
                q.push(w)
                signal(notEmpty)
        }

        get() {
                if (q.empty)
                        wait(notEmpty)
                q.pop()
        }
}

hmm..... is this right?



  Put()

  Get()

Monitor example:  a workqueue
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B

A

waiting threads

signaled threads

waiting threadssignal

put() {
        q.push()
        signal(isEmpty)
}



  Put()

  Get()

Monitor example:  a workqueue

25

B

A

waiting threads

• Put() was just called
• Who enters monitor next:  A or B?

signaled threads

waiting threads



Monitor example:  a workqueue
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• What if A enters next? (Hoare style monitors)
- this works fine

get() {
        if (q.empty)
                wait(notEmpty)
        q.pop()
}

  Put()
  Get()

B

A
signaled

waiting

pops the new item A is blocked here



Monitor example:  a workqueue

27

• What if B enters next? (Mesa style monitors)
- B pops item
- A sees an empty queue!

get() {
        if (q.empty)
                wait(notEmpty)
        q.pop()
}

  Put()
  Get()

B

A
signaled

waiting

oops! A is blocked here



Monitor example:  a workqueue
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get() {
        while (q.empty)
                wait(notEmpty)
        q.pop()
}

  Put()
  Get()

B

A
signaled

waiting

fix: need a 
while loop!

A is blocked here

• What if B enters next? (Mesa style monitors)
- B pops item
- A sees an empty queue!



Monitor scheduling choices
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•Hoare1 monitors:  signal(c) means
- run waiter immediately
- must restore monitor invariants before signalling

     - can’t leave a mess for the waiter!

•Mesa2 monitors:  signal(c)
- waiter is made ready, but the signaller continues
- waiter runs some time later
- being woken up is only a hint something changed

     - condition might not hold
     - must recheck (hence the while loop)

1Tony Hoare (Turing Award 1980)
2Mesa programming language, by Butler Lampson (Turing award 1992)



Pseudocode for Mesa monitors
(everyone uses Mesa semantics these days)
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Monitor  {
        Queue      q
        Condition  notEmpty

        put(w) {
                q.push(w)
                signal(notEmpty)
        }

        get() {
                while (q.empty)
                        wait(notEmpty)
                q.pop()
        }
}

need to recheck every
time we wake up



Hoare monitors
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waiting to call
a method

condition var
wait queues

leave monitor
after you

signal,
so a

signalled
thread can

run

diagram courtesy of wikipedia



Mesa monitors

32

waiting to call
a method

condition var
wait queues

rejoin entrance queue 
when signalled

diagram courtesy of wikipedia



Monitors Summary
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• Language and compiler support
- mutual exclusion for methods
- condition variables for waiting

• Problems?
- heavyweight: no fine-grained locking

• Java:
- monitors if you want them (Mesa scheduling)
- locks and condition variables, too


