
CSE 451: Operating Systems

Lab Section: Week 4

1

Today

• Project 3

• Synchronization
(this may be useful for tomorrow’s quiz☺)

2

Reminder ...

• Project 1 due last night!
- dropbox is closed

• Project 2 due last night!
- but you can submit late
- late penalty is 0.5 grade points per day (I think ...)

3

Project 3

• File copy program
- implement entirely in user-space (no kernel hacking ☹)

• Three parts
- implement using multithreading + synchronous I/O
- implement using single-threading + asynchronous I/O
- analyze the performance of both implementations

(more on this next week)

4

source
files

destination
files

I/O in Windows
• Synchronous

5

 ReadFile(&buf)

 NtReadFile() {
 submit request
 wait for signal
 }

I/O Driver
 - writes to &buf
 - notifies when done

user code kernel code

• Asynchronous

 ev = CreateEvent()
 ReadFile(&buf, ev)
 // kernel fills buf
 // concurrently with this
 // code
 WaitForSingleObject(ev)

 NtReadFile() {
 submit request
 }

I/O Driver
 - writes to &buf
 - notifies “ev” when done

user code kernel code

 NtWaitForSingleObject() {
 wait for signal
 }

I/O in Windows

6

•Advantages of sync I/O?
- easier to program

(don’t have to explicitly synchronize with I/O driver)

• Advantages of async I/O?
- more efficient, potentially

(you can “overlap” work with the I/O request)

• How do we make sync I/O go faster?
- use more threads!

Project 3
Multithreaded + Synchronous I/O

7

source files

destination
files

buffer

Thread 1

buffer

Thread 2

buffer

Thread 3

ReadFile()

WriteFile()

ReadFile() ReadFile()

WriteFile() WriteFile()

Project 3
Single-threaded + Asynchronous I/O

8

source files

destination
files

buffer

Thread 1

ReadFile()

WriteFile()

buffer buffer

(in progress) (done!)

WaitForMultipleObjects([ev1, ev2, ev3])

ReadFile()
(in progress)

ReadFile()
(in progress)

(in progress)

(done!)

WriteFile()
(in progress)

Today

• Project 3

• Synchronization
(this may be useful for tomorrow’s quiz☺)

9

Why do we need synchronization?

• Safe data sharing
- bank account example:

10

 withdraw(account, value) {
 balance = get_balance(account)
 balance -= value
 put_balance(account, balance)
 }

 withdraw(account, value) {
 balance = get_balance(account)
 balance -= value

 put_balance(account, balance)
 }

oops!

cpu1 cpu2

Why do we need synchronization on
single-processor computers?

• Preemption

11

 withdraw(account, value) {
 balance = get_balance(account)

 withdraw(account, value) {
 balance = get_balance(account)
 balance -= value context

switch

• Interrupts

user space

kernel space
 system call handler

hw interrupt

context switch

Type of synchronization
(we’ll talk about these today)

• Locks / Mutexes

• Semaphores

• Condition variables

•Monitors (= mutexes + condition variables)

12

Locks / Mutexes

13

•MUTual EXclusion
- lock / acquire
- unlock / release

• Spinlocks
- acquire: busy wait (spin) until the lock is released

• Blocking / queueing mutexes

Mutex
 held?
 yesT1, T5, T3

waiters (threads)

Semaphores

14

•Operations
- P (or more sanely: down / wait)
- V (or more sanely: up / signal)

Sem
 free resources
 T3..

waiters (threads)

 T1: down(sem)

 T2: down(sem)
 T2: down(sem)

 T3: down(sem)

 T2: up(sem)

 T1:

 T2:

• Binary semaphore
- initial count = 1
- same as a mutex

 T3:

Semaphores

15

•What are counting semaphores good for?
- resource allocation!

• Example: memory allocation w/ quotas
- sem.count initialized to the memory quota in bytes
- on malloc(n): call down(sem, n)
- on corresponding free(): call up(sem, n)

• Example: RPC windowing
- want no more than n RPCs outstanding at any time
- sem.count initialized to n

• Example: bounded buffer
- see lecture slides

Problems with semaphores (and locks)

16

•No connection between lock and the data it
guards

• Easy to:
- forget to acquire a lock
- forget to release a lock
- use the wrong lock

Monitors

17

• A programming language construct
- synchronization code added by the compiler

• Essentially a class
- shared private data
- methods
- automatic synchronization

A monitor

18

shared data

operations (methods)

wait queue of threads
trying to enter the monitor

at most one thread
in monitor at a

time

 Put()

 Get()

Monitor example: a workqueue

19

waiting threads

 Put()

 Get()

Monitor example: a workqueue

20

waiting threads

• Queue is empty
• Now what?

 Put()

 Get()

Monitor example: a workqueue

21

waiting threads

• Queue is empty
• Now what?

waiting threads

signal

condition variable

Condition Variables

22

• wait(c)
- release monitor lock
- wait for a signal
- then recapture monitor lock

• signal(c)
- wake up at most one waiting thread
- if no waiting threads, signal is lost!

• broadcast(c)
- wake up all waiting threads

Workqueue pseudocode

23

Monitor {
 Queue q
 Condition notEmpty

 put(w) {
 q.push(w)
 signal(notEmpty)
 }

 get() {
 if (q.empty)
 wait(notEmpty)
 q.pop()
 }
}

hmm..... is this right?

 Put()

 Get()

Monitor example: a workqueue

24

B

A

waiting threads

signaled threads

waiting threadssignal

put() {
 q.push()
 signal(isEmpty)
}

 Put()

 Get()

Monitor example: a workqueue

25

B

A

waiting threads

• Put() was just called
• Who enters monitor next: A or B?

signaled threads

waiting threads

Monitor example: a workqueue

26

• What if A enters next? (Hoare style monitors)
- this works fine

get() {
 if (q.empty)
 wait(notEmpty)
 q.pop()
}

 Put()
 Get()

B

A
signaled

waiting

pops the new item A is blocked here

Monitor example: a workqueue

27

• What if B enters next? (Mesa style monitors)
- B pops item
- A sees an empty queue!

get() {
 if (q.empty)
 wait(notEmpty)
 q.pop()
}

 Put()
 Get()

B

A
signaled

waiting

oops! A is blocked here

Monitor example: a workqueue

28

get() {
 while (q.empty)
 wait(notEmpty)
 q.pop()
}

 Put()
 Get()

B

A
signaled

waiting

fix: need a
while loop!

A is blocked here

• What if B enters next? (Mesa style monitors)
- B pops item
- A sees an empty queue!

Monitor scheduling choices

29

•Hoare1 monitors: signal(c) means
- run waiter immediately
- must restore monitor invariants before signalling

 - can’t leave a mess for the waiter!

•Mesa2 monitors: signal(c)
- waiter is made ready, but the signaller continues
- waiter runs some time later
- being woken up is only a hint something changed

 - condition might not hold
 - must recheck (hence the while loop)

1Tony Hoare (Turing Award 1980)
2Mesa programming language, by Butler Lampson (Turing award 1992)

Pseudocode for Mesa monitors
(everyone uses Mesa semantics these days)

30

Monitor {
 Queue q
 Condition notEmpty

 put(w) {
 q.push(w)
 signal(notEmpty)
 }

 get() {
 while (q.empty)
 wait(notEmpty)
 q.pop()
 }
}

need to recheck every
time we wake up

Hoare monitors

31

waiting to call
a method

condition var
wait queues

leave monitor
after you

signal,
so a

signalled
thread can

run

diagram courtesy of wikipedia

Mesa monitors

32

waiting to call
a method

condition var
wait queues

rejoin entrance queue
when signalled

diagram courtesy of wikipedia

Monitors Summary

33

• Language and compiler support
- mutual exclusion for methods
- condition variables for waiting

• Problems?
- heavyweight: no fine-grained locking

• Java:
- monitors if you want them (Mesa scheduling)
- locks and condition variables, too

