
CSE 451: Operating Systems

Lab Section: Week 3

1

Today

• Last week’s quiz

• Project 2

• Scheduling
(this will hopefully be useful for tomorrow’s quiz☺)

2

Last week’s quiz

1) Define terms: (a) exception, (b) fault,
 (c) interrupt, (d) trap

- see answer in slides from last week

Two reasons for losing points:
• didn’t mention system calls!
• these are different from Java exceptions ...

3

Last week’s quiz:
our “exceptions” cross user/kernel/hw boundary

4

User
Space

Kernel
Space

JVM Process

 JVM Runtime:
 - JIT
 - GC

 throw E;

 catch(e) {

java thread

Java Exceptions

Hardware divide-by-0

Process
(language not important here;

this example is C)

 p = NULL;
 x = *p;

thread

HW Exceptions

segfault

segfault handlerdiv-by-0 handler

Last week’s quiz

2) Explain how kernel/user modes are related to
privileged machine instructions

- everyone got this right!

5

Last week’s quiz

3) What’s the importance of separating threads from
processes?

- concurrency?
 We don’t need threads for concurrency!

6

✘

Process Process Process

cpu cpu cpu

✔ sharing

Threads share Process’ resources

7

private memory
(address space)

Process

threads
(at least one)

resources

open files
net connections
etc.

Thread

stack ptr
instruction ptr
floating point
etc.

registers

code

stack
(per thread)

data

Thread

stack ptr
instruction ptr
floating point
etc.

registers

Project 2

•Due January 26, 11:59 pm
- same time as Project 1
- you can resubmit until then

•Questions?

8

Today

• Last week’s quiz

• Project 2

• Scheduling
(this will hopefully be useful for tomorrow’s quiz☺)

9

What real schedulers look like

10

scheduler.c

Scheduling happens throughout
the kernel

11

We’ll focus on CPU scheduling

Process A Process B Process C

User
Space

Kernel
Space

Hardware CPU 1
CPU 2

graphics
card

network
cardphysical memory

packet
buffers

thread
scheduler

memory
manager DirectX

full screen
access

(a game)

CPU scheduling in the abstract

•What might we want in a good schedule?
- fairness (every job gets a “fair” slice)

- priority (some jobs are more important)

- deadlines (some jobs must finish by a certain time)

- thread locality

-

12

Job 1 Job 2 Job 3 Job 4 Job 5

|-- time slice --|

a schedule:

time

CPU scheduling in the abstract

• Practical issues
- new jobs are starting all the time
- how do we know how long a job will take?

(can’t plan ahead very far)

13

Job 1 Job 2 Job 3 Job 4 Job 5

|-- time slice --|

a schedule:

time

Two decisions a scheduler makes

•When do I reschedule the CPU?
(i.e., how long is the next time slice?)

•Who gets the CPU next?

14

When do I reschedule the CPU?

•Cooperative scheduling
- reschedule when:

 ... a thread blocks on I/O
 ... a thread calls yield()
 ... a thread finishes

- problem:
 ... must rely on threads to relinquish CPU (fairness)

• Preemptive scheduling
- can reschedule at any time
- usually at timer interrupts

15

✔ Batch schedulers

✔ Interactive schedulers

Who gets the CPU next?

•Many algorithms ...
Let’s look at a few simple single-CPU algorithms

• Round robin order

16

T1 T2 T3 T4 T5

T6 T7

ready queue
(cycle through using round-robin)

blocked queue
(e.g., waiting on I/O)

running

Who gets the CPU next?

• Priority order

17

T5 T3 T4 T1 T2

T6 T7

priority-sorted ready queue
(always pick first)

blocked queue
(e.g., waiting on I/O)

running

Who gets the CPU next?

•Multi-level Feedback Queues

18

T5 T3 T4

T3 T6

ready queue: highest priority (100)
(schedule round-robin)

blocked queue
(e.g., waiting on I/O)

running

T1 T2ready queue (level 99)

ready queue (level 98) . . .

⫶ ⫶

Who gets the CPU next?

•Multi-level Feedback Queues

19

T3 T6blocked queue
(e.g., waiting on I/O)

running

T1 T2 T5

. . .

⫶ ⫶

T5 T3 T4

periodically move
old tasks “down”

ready queue: highest priority (100)
(schedule round-robin)

ready queue (level 99)

ready queue (level 98)

The kernel needs CPU time too!

20

Process A Process B Process C

User
Space

Kernel
Space

Hardware network
card

packet
buffers

Which thread does the work
of sending these packets?

Answer: a driver thread!

the network driver

Driver threads get
scheduled like any

other thread

