CSE 451: Operating Systems

Lab Section: Week 3

Today

® [ast week’s quiz
® Project 2

® Scheduling

(this will hopefully be useful for tomorrow’s quiz©)

Last week’s quiz

|) Define terms: (a) exception, (b) fault,
(c) interrupt, (d) trap

- see answer in slides from last week

Two reasons for losing points:
e didn’t mention system calls!
* these are different from Java exceptions ...

Last week’s quiz:

our “exceptions’” cross user/kernel/hw boundary

Java Exceptions HW Exceptions
:c.P.\'row E; =
p = NULL;
Usel" ﬂcatch(e) { X= Py
Space (java thread)

VM Runtime:
NIT
= o Process

(language not important here;
JVM Process this example is C)

Kernel

Space / div-by-0 handler / segfault handler

Hardware '\ divide-by-0 \segfault

4

Last week’s quiz

2) Explain how kernel/user modes are related to

privileged machine instructions
- everyone got this right!

Last week’s quiz

3) What'’s the importance of separating threads from

processes?

X ... concurrency!?
We don’t need threads for concurrency!

sl (s | |8

Process Process Process

< < <

cpu cpu cpu

v sharing

Threads share Process’ resources

Process

stack
Th read //' (Per thread) — Th read

instruction ptr |~ data _instruction ptr

floating point \ / floating point
24

\

stack ptr —~stack ptr

otc. \‘l code |‘/

private memory
registers e (address space) registers

etc.

threads
(at least one)

open files
net connections
etc.

resources
7

Project 2

® Due January 26, | |:59 pm
- same time as Project |
- you can resubmit until then

® Questions!

® Scheduling

(this will hopefully be useful for tomorrow’s quiz©)

What real schedulers look like

scheduler.c

Scheduling happens throughout

the kernel

Process A Process B Process C(a game)
User
)))))))))
Space —— e -
- full screen
Kernel B oo |
Space thread * memory packet 4
scheduler manager buffers DirectX
12 v v v
Hardware CPU I | : network graphics
CPU 2 physical memory card card

wWe’ll focus on CPU scheduling

CPU scheduling in the abstract

— time slice —

a schedule:| Job | Job 2 |Job 3 Job 4 Job 5

time —

® What might we want in a good schedule!?

- fairness (every job gets a “fair” slice)

- priority (some jobs are more important)
- deadlines (some jobs must finish by a certain time)

- thread locality

CPU scheduling in the abstract

— time slice —

a schedule:| Job | Job 2 |Job 3 Job 4 Job 5

time —

® Practical issues

- new jobs are starting all the time
- how do we know how long a job will take?

(can’t plan ahead very far)

Two decisions a scheduler makes

® VWhen do | reschedule the CPU?

(i.e., how long is the next time slice?)

® Who gets the CPU next?

When do | reschedule the CPU!?

® Cooperative scheduling v/ Batch schedulers
- reschedule when:
...a thread blocks on I/O
... a thread calls yield()
... a thread finishes

- problem:
... must rely on threads to relinquish CPU (fairness)

® Preemptive scheduling v/ Interactive schedulers

- can reschedule at any time
- usually at timer interrupts

Who gets the CPU next?

® Many algorithms ...
Let’s look at a few simple single-CPU algorithms

® Round robin order

running

A

ready queue [T o [T3 [T4

(cycle through using round-robin)

blocked queue
(e.g., waiting on |/O) T6 T7

Who gets the CPU next?

® Priority order

running

A

priority-sorted ready queue 15 | 131 14 | T

(always pick first)

blocked queue
(e.g., waiting on |/O) T6 T7

Who gets the CPU next?

® Multi-level Feedback Queues

running

ready queue: highest priority (100) T5 | T3 | T4

(schedule round-robin)

ready queue (level 99) | T| | T2

ready queue (level 98)

blocked queue
(e.g., waiting on 1/O) T3 T6

Who gets the CPU next?

® Multi-level Feedback Queues

ready queue: highest priority (100)

(schedule round-robin)

ready queue (level 99)

ready queue (level 98)

blocked queue
(e.g., waiting on 1/O)

running
N
T3 | T4
TI | T2
periodically move
old tasks ‘“down”
T3 | T6

The kernel needs CPU time too!

Process A Process B Process C

Jser)))))))))

Space

Which thread does the work ® : Answer: a driver thread!

Kernel of sending these packets? ¢ @
Space packet 5 < the network driver
buffers
—
Hardware network
card

Driver threads get
scheduled like any
other thread

20

