
CSE 451: Operating Systems

Tom Bergan, TA

1

Why operating systems?

•OSes provide a fundamental service
- resource sharing (cpus, disks, network, etc...)
- resource abstraction

• More than just windows/linux
- Java VM
- web browsers

...

• Techniques are widely applicable
- data structures, caching, concurrency, ...

2

What is this section for?

• Projects

•Questions!
- please bring questions!

• Some extensions of the lectures / textbook

•Other resources:
- discussion board (see course webpage)
- office hours

3

Today

• Introduction

• Vote on office hours

• C review

• Project 1 tips

4

Office Hours?
(room TBD)

Monday 11:30 - 12:30 (right after class)
Monday 1:00 - 2:00
Monday 2:00 - 3:00
Tuesday 2:00 - 3:00
Wednesday 11:30 - 12:30 (right after class)

5

Why learn C?

•Because the Windows kernel is written in C . . .
. . . and our projects use Windows

•OSes can be written in any language, e.g.:
- LISP (see the LISP machines)
- C# (see Microsoft Research’s Singularity OS)

•Why use C for OSes?
- historical reasons (other languages weren’t fast enough)
➡ precise control over memory layout

 C’s biggest strength and weakness

6

C vs Java: constructs
Java C

import java.xyz;

class Point {
 public int x;
 public int y;

 public int foo(int a) {
 ...
 Point p;
 }

#include “xyz.h”

struct Point {
 int x;
 int y;
};

int foo(int a) {
 ...

 Point* p;
}

Packages Header files

Classes Structs
 - all members
 public

Methods Functions

References Pointers

7

Pointers
int a = 5;
int b = 6;
int *pa = &a; // declares a pointer to a
 // with value as the
 // address of a

*pa = b; // changes value of a to b
 // (a == 6)

pa = &b; // changes pa to point to
 // b’s memory location (on
 // stack)

8

Pass-by-value vs. Pass-by-pointer

int foo(int x) {
 return x + 1;
}

void bar(int* x) {
 *x += 1;
}

void main() {
 int x = 5;
 int y = foo(x);
 // x==5
 // y==6
 bar(&x);
 // x==6
 // y==6
}

by-value

by-pointer

9

What can pointers point at?

• Local (“stack”) memory
 void foo() {
 int a;
 int* p = &a;

• Global memory
 int g;
 void foo() {
 int* p = &g;

• Dynamic (“heap”) memory (more on this later)
 void foo() {
 int* p = malloc(sizeof(int));
 free(p);

< exists until the function returns

< always exists

^ exists until free()’ed

10

Function Pointers
int some_fn(int x, char c) { ... }
 // declares and defines a function

int (*pt_fn)(int, char) = NULL;
 // declares a pointer to a function
 // that takes an int and a char as
 // arguments and returns an int

pt_fn = &some_fn;
 // makes pt_fn point at some_fn()’s
 // location in memory

int a = (*pt_fn)(7, ‘p’);
 // calls some_fn and stores the result
 // in variable a

11

Arrays

•Arrays are just pointers

• Don’t use pointer arithmetic unless you have a
good reason to!

 void foo() {
 int a[100]; // allocates a 100 elem array;
 // a is a pointer to the
 // beginning of the array

 a[1] = 5; // the second elem in the
 // array is set to 5

 *(a+1) = 5; // same as the above, but uses
 // pointer arithmetic

12

Common C Pitfalls (1)

•What’s wrong and how to fix it?

 char* city_name(float lat, float lon) {
 char name[100];
 ...
 return name;
 }

• Problem: returning pointer to local (stack)
memory

< name is invalid after return

13

Common C Pitfalls (1)

• Solution: allocate “name” on the heap

 char* city_name(float lat, float lon) {
 char* name = malloc(100 * sizeof(char));
 ...
 return name;
 }

14

Common C Pitfalls (2)

•What could be wrong? (similar to prior example)

 void foo() {
 int tmp[100];
 int y = some_fn(&tmp);
 ...
 return;
 }

• Problem: some_fn() might save the address of
tmp in a global:

 int* g;
 int some_fn(int* a) {
 g = a;

< tmp is invalid after return

15

Common C Pitfalls (3)

•What’s wrong and how to fix it?

 void foo() {
 char* buf = malloc(32);
 ...
 print(buf);
 return;
 }

• Problem: memory leak

< didn’t free buf

16

Common C Pitfalls (3)

• Solution: call “free(buf)” before “return”

 void foo() {
 char* buf = malloc(32);
 ...
 print(buf);
 free(buf); // fix memory leak
 return;
 }

17

Common C Pitfalls (4)

•What’s wrong and how to fix it?

 void foo() {
 char* buf = malloc(32);
 ...
 free(buf);
 print(buf);
 return;
 }

• Problem: use-after-free

< called free() too soon

18

Common C Pitfalls (5)

•What’s wrong and how to fix it?

 struct Foo {
 int x,y;
 }
 void foo() {
 Foo* foo = malloc(sizeof(Bar));
 foo->x = 1;
 foo->x = 2;
 ...
 }

• Problem: bad allocation

^ used wrong type in sizeof

19

Common C Pitfalls (5)

• Suggested idiom: use sizeof(*foo)

 struct Foo {
 int x,y;
 }
 void foo() {
 Foo* foo = malloc(sizeof(*foo));
 foo->x = 1;
 foo->x = 2;
 ...
 }

20

Project 1

•Goals
- get acquainted with Virtual PC
- get acquainted with the NT kernel

• Done alone
- Projects 3 and 4 can be done in groups of 2

• Don’t use local hard disks of the lab machines for
permanent storage!
- use Z:
- if you run out of space (probable: virtual disks get big),

make a directory for yourself in
 o:\unix\projects\instr\11wi\cse451

21

Project 1

•Making a VM image
- walkthrough posted on the course website

• Editing the virtual disk
- you can drag/drop from Explorer running on your

workstation to Explorer running on Virtual PC (really cool)

• What if you can’t boot your VM due to a kernel bug?
- use the “mount” command (see project1/Wrk.cmd)
- allows you to mount virtual disks on your workstation

 should show up as a drive (e.g., “E:”)
 currently doesn’t work (stay tuned)

22

Project 1

•Debugging
- use the “winbag” command
- this allows you to debug the NT kernel using a Visual

Studio-like debugger (really cool)

23

