Section 4
Processes, kernel threads, user threads

Why use threads?

* Perform multiple tasks at once (reading and
writing, computing and receiving input)

* Take advantage of multiple CPUs
* More efficiently use resources

Look at this silly little bouncing ball example.

Why is this “faster’?

Single thread

Thread State
Running

Waiting

Running

Thread 1

e

Thread 2

Quick view

e Process

« |solated with its own virtual address space

« Contains process data like file handles

 Lots of overhead

« Every process has AT LEAST one kernel thread
« Kernel threads

« Shared virtual address space

« Contains running state data

« Less overhead

« From the OS's point of view, this is what is scheduled to run on a CPU
» User threads

- Shared virtual address space, contains running state data

« Kernel unaware

« Even less overhead

Trade-offs

 Processes

» Secure and isolated

« Kernel aware

» Creating a new process (address space!) brings lots of overhead
« Kernel threads

* No need to create a new address space

* No need to change address space in context switch

« Kernel aware

 Still need to enter kernel to context switch
» User threads

 No new address space, no need to change address space

* No need to enter kernel to switch
» Kernel is unaware. No multiprocessing. I/O blocks all user threads.

When should | use which?

* Process

 When isolation is necessary
- Like in Chrome

 Kernel threads

Multiprocessor

heavy CPU per context switch
Blocking 1/0O

Compiling Linux

e User threads

» Single processor or single kernel thread
 Light CPU per context switch
e Little or no blocking I/O

Context switching

Xsthread switch: Thread 1 TCB Thread 2 TCB
pusha s SP [:::]\ o SPI I\

movl %esp, (%eax)
movl %edx, $esp T : ______ :
popa : : | |
ret | : : :
|
| ' : :
| ' I |
I |
I |
Thread 2|
registers
CPU
| ESP _
i“?;fside Thread 1 running Thread 2 ready
A
e 2 e Want to switch to thread

p

Push old context

Xsthread switch: Thread 1 TCB \ Thread 2 TCB \
pusha s sp] o SP

movl %esp, (%eax)
movl %edx, $Sesp - - - T : : —————— :
popa : : I I
l ' | |
ret : ! | |
Thread 1 | :
registers , .
I
| |

CPU
| ESP |
i“?.'{side Thread 1 running Thread 2 ready
Thread 1 regs 8

Save old stack pointer

Xsthread switch: Thread 1 TCB \ Thread 2 TCB \
pusha SP SP

movl %esp, (%eax)

movl %edx, sesp - T T T T : : —————— :
popa : : I I
ret I : I I
> I: I |

Thread 1 | :

registers , .

|

| |
Thread 2|

registers

CPU
| ESP |
i“?;f;ide Thread 1 running Thread 2 ready
Thread 1 regs 9

Change stack pointers

Xsthread switch: Thread 1 TCB \ Thread 2 TCB \
pusha SP SP

movl %esp, (seax)
movl %edx, %esp - - T : : —————— :
popa : : | |
| ' I |
ret X | |
Thread 1 | :
registers : I
i
| |

CPU
I ESP |
i Thread 1 ready Thread 2 running
Thread 1 regs 10

Pop off new context

Xsthread switch:
pusha
movl %esp, (%eax)
movl %Sedx, sesp
popa
ret

ESP

Thread 1 TCB Thread 2 TCB
SP SP

|

|

|

|

Thread 1 :
registers :
:

|

|

|

Thread 2 regs

Thread 1 ready Thread 2 running
11

Done: return

Xsthread switch: Thread 1 TCB \ Thread 2 TCB \
pusha SP SP

movl %esp, (%eax)
movl %edx, %esp T T : L
popa : : : |
ret ' | I I
_ Thread 1| : |
= What got switched? registers ! |
= GP | |
"= PC (how?) | A
= Other registers : :
CPU
ESP
i“?:slide Thread 1 ready Thread 2 running
Thread 2 regs 12

ret pops off the new

return address!

i

Adjusting the PC

Thread 1 TCB Thread 2 TCB
SP SP

|

|

|

|

Thread 1 :
registers :
:

|

|

|

ra=0x400

Thread 1 (stopped): Thread 2 running:
switch(tl,t2); switch(t2,...);

0x400: printf(“test 1”); 9x800: printf(“test 2”)

Context Switching

* So was this for kernel threads or user threads?

* Trick question! This can be accomplished in
either kernel or user mode.

Theading Models

Between kernel and user threads, a process might use one of
three models:

* Onetoone (1:1)

— Only use kernel threads without user level threads on top of
them.

 Many to one (M:1)

— Use only one kernel thread with many user level threads built on
top of them.

 Many to Many (N:M)
— Use many kernel threads with many user level threads.

Threading Models

* Many to many sounds nice, intuitively but...

* ...It can actually get problematic in its
complexity

* See Scheduler Activations

* Linux actually runs One to one

* Windows runs a lazy version of Scheduler
Activations.

Schedules

* Make sure you understand the metrics
— maximize CPU utilization
— maximize throughput (requests completed / s)
— minimize average response time (average time
from submission of request to completion of
response)
— minimize average waiting time (average time from
submission of request to start of execution)
* And starvation/fairness
* And which schedules maximize which metrics

Linux Scheduler

* Completely Fair Scheduler (CFS)

* Linux's scheduler since 2.6.23
* Computes the fair CPU share for a task

* Based on current number of tasks for a user

* Tracks the difference between run time and
ideal fair share

* Schedules longest waiting non-real-time task
* Implemented in red-black tree

* But, is this really fair?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

