

Section 4
Processes, kernel threads, user threads

Why use threads?

 Perform multiple tasks at once (reading and
writing, computing and receiving input)

 Take advantage of multiple CPUs
 More efficiently use resources

Look at this silly little bouncing ball example.

Why is this “faster”? I/O
CPU

Single thread
Thread 1

Thread 2

Waiting

Running

Running

Thread State

Quick view

 Process
 Isolated with its own virtual address space
 Contains process data like file handles
 Lots of overhead
 Every process has AT LEAST one kernel thread

 Kernel threads
 Shared virtual address space
 Contains running state data
 Less overhead
 From the OS's point of view, this is what is scheduled to run on a CPU

 User threads
 Shared virtual address space, contains running state data
 Kernel unaware
 Even less overhead

Trade-offs

 Processes
 Secure and isolated
 Kernel aware
 Creating a new process (address space!) brings lots of overhead

 Kernel threads
 No need to create a new address space
 No need to change address space in context switch
 Kernel aware
 Still need to enter kernel to context switch

 User threads
 No new address space, no need to change address space
 No need to enter kernel to switch
 Kernel is unaware. No multiprocessing. I/O blocks all user threads.

When should I use which?

 Process
 When isolation is necessary

− Like in Chrome

 Kernel threads
 Multiprocessor
 heavy CPU per context switch
 Blocking I/O
 Compiling Linux

 User threads
 Single processor or single kernel thread
 Light CPU per context switch
 Little or no blocking I/O

 7

Context switching
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread
2…

Thread 2
registers

Thread 1 regs

 8

Push old context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 9

Save old stack pointer
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 10

Change stack pointers
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 2
registers

Thread 1
registers

Thread 1 regs

 11

Pop off new context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers

Thread 2 regs

 12

Done; return
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers What got switched?

 SP
 PC (how?)
 Other registers

Thread 2 regs

Adjusting the PC
Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

 Thread 2 running:
switch(t2,...);

0x800:printf(“test 2”);

Thread 1
registers

 ret pops off the new
return address!

ra=0x800

 PC

 Thread 1 (stopped):
switch(t1,t2);

 0x400: printf(“test 1”);

ra=0x400

Context Switching

 So was this for kernel threads or user threads?
 Trick question! This can be accomplished in

either kernel or user mode.

Theading Models

Between kernel and user threads, a process might use one of
three models:

 One to one (1:1)

– Only use kernel threads without user level threads on top of
them.

 Many to one (M:1)

– Use only one kernel thread with many user level threads built on
top of them.

 Many to Many (N:M)

– Use many kernel threads with many user level threads.

Threading Models

 Many to many sounds nice, intuitively but...
 ...it can actually get problematic in its

complexity
 See Scheduler Activations

 Linux actually runs One to one
 Windows runs a lazy version of Scheduler

Activations.

Schedules

 Make sure you understand the metrics

– maximize CPU utilization

– maximize throughput (requests completed / s)

– minimize average response time (average time

from submission of request to completion of

response)

– minimize average waiting time (average time from

submission of request to start of execution)
 And starvation/fairness
 And which schedules maximize which metrics

Linux Scheduler

 Completely Fair Scheduler (CFS)
 Linux's scheduler since 2.6.23
 Computes the fair CPU share for a task

 Based on current number of tasks for a user
 Tracks the difference between run time and

ideal fair share
 Schedules longest waiting non-real-time task

 Implemented in red-black tree

 But, is this really fair?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

