

Section 4
Processes, kernel threads, user threads

Why use threads?

 Perform multiple tasks at once (reading and
writing, computing and receiving input)

 Take advantage of multiple CPUs
 More efficiently use resources

Look at this silly little bouncing ball example.

Why is this “faster”? I/O
CPU

Single thread
Thread 1

Thread 2

Waiting

Running

Running

Thread State

Quick view

 Process
 Isolated with its own virtual address space
 Contains process data like file handles
 Lots of overhead
 Every process has AT LEAST one kernel thread

 Kernel threads
 Shared virtual address space
 Contains running state data
 Less overhead
 From the OS's point of view, this is what is scheduled to run on a CPU

 User threads
 Shared virtual address space, contains running state data
 Kernel unaware
 Even less overhead

Trade-offs

 Processes
 Secure and isolated
 Kernel aware
 Creating a new process (address space!) brings lots of overhead

 Kernel threads
 No need to create a new address space
 No need to change address space in context switch
 Kernel aware
 Still need to enter kernel to context switch

 User threads
 No new address space, no need to change address space
 No need to enter kernel to switch
 Kernel is unaware. No multiprocessing. I/O blocks all user threads.

When should I use which?

 Process
 When isolation is necessary

− Like in Chrome

 Kernel threads
 Multiprocessor
 heavy CPU per context switch
 Blocking I/O
 Compiling Linux

 User threads
 Single processor or single kernel thread
 Light CPU per context switch
 Little or no blocking I/O

 7

Context switching
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread
2…

Thread 2
registers

Thread 1 regs

 8

Push old context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 9

Save old stack pointer
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 10

Change stack pointers
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 2
registers

Thread 1
registers

Thread 1 regs

 11

Pop off new context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers

Thread 2 regs

 12

Done; return
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers What got switched?

 SP
 PC (how?)
 Other registers

Thread 2 regs

Adjusting the PC
Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

 Thread 2 running:
switch(t2,...);

0x800:printf(“test 2”);

Thread 1
registers

 ret pops off the new
return address!

ra=0x800

 PC

 Thread 1 (stopped):
switch(t1,t2);

 0x400: printf(“test 1”);

ra=0x400

Context Switching

 So was this for kernel threads or user threads?
 Trick question! This can be accomplished in

either kernel or user mode.

Theading Models

Between kernel and user threads, a process might use one of
three models:

 One to one (1:1)

– Only use kernel threads without user level threads on top of
them.

 Many to one (M:1)

– Use only one kernel thread with many user level threads built on
top of them.

 Many to Many (N:M)

– Use many kernel threads with many user level threads.

Threading Models

 Many to many sounds nice, intuitively but...
 ...it can actually get problematic in its

complexity
 See Scheduler Activations

 Linux actually runs One to one
 Windows runs a lazy version of Scheduler

Activations.

Schedules

 Make sure you understand the metrics

– maximize CPU utilization

– maximize throughput (requests completed / s)

– minimize average response time (average time

from submission of request to completion of

response)

– minimize average waiting time (average time from

submission of request to start of execution)
 And starvation/fairness
 And which schedules maximize which metrics

Linux Scheduler

 Completely Fair Scheduler (CFS)
 Linux's scheduler since 2.6.23
 Computes the fair CPU share for a task

 Based on current number of tasks for a user
 Tracks the difference between run time and

ideal fair share
 Schedules longest waiting non-real-time task

 Implemented in red-black tree

 But, is this really fair?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

