CSE 451: Operating Systems
Spring 2011

Module 7
Semaphores and Monitors

John Zahorjan
zahorjan@cs.washington.edu
Allen Center 534

Last Time: Locks

acquire()/release() operations

— In complicated code, can be hard to get right
« Some implementations provide “recursive locks”

« Some implementations complain if one acquires, another releases
— Some applications rely on one thread acquiring, another releasing

Come in spinning and blocking varieties
— Spin if you expect a short wait and there are multiple cores
— Block if only one CPU/core or you expect long waits

Blocking involves an update to a queue, i.e., a critical
section
— So, still need spin locks, if just to implement blocking locks

This Time: Other Synchronization
Primitivies

(Synchronization is a way of putting happens-before arcs into the
thread graph)

Semaphores
— a generalization of blocking locks

Condition variables
— A way to wait for an event (while in a critical section)

Monitors
— Language (or convention)-based way to never forget to lock or unlock

Barriers
— Synchronize n threads in a single statement

Join
— Wait for a thread to terminate

Semaphores

* Semaphore = a synchronization primitive
— higher level of abstraction than locks

— invented by Dijkstra in 1968, as part of the THE
operating system

* A semaphore is:

— a variable that is manipulated through two
operations,
P and V (Dutch for “wait” and “signal”)
 P(sem) (wait/down)

— block until sem > 0, then subtract 1 from sem and
proceed

 V(sem) (signal/up)
— add 1 to sem

* Do these operations atomically

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Blocking in semaphores

« Each semaphore has an associated queue of threads

— when P (sem) is called by a thread,

e if sem was “available” (>0), decrement sem and let thread
continue

« if sem was “unavailable” (<=0), place thread on associated
queue; run some other thread

— when V (sem) is called by a thread

 if thread(s) are waiting on the associated queue, unblock one
— place it on the ready queue
— might as well let the “V-ing” thread continue execution

« otherwise (when no threads are waiting on the sem),
increment sem

— the signal is “remembered” for next time P(sem) is called

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Two types of semaphores

e Binary semaphore (aka mutex semaphore)
— sem is initialized to 1

— guarantees mutually exclusive access to resource (e.g., a
critical section of code)

— only one thread/process allowed entry at a time
— Logically equivalent to a blocking lock

« Counting semaphore
— Let N threads into “critical section,” not just one
« Why? We'll see in a minute...

— sem is initialized to N
« N = number of units available

— represents resources with many (identical) units available
— allows threads to enter as long as more units are available

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Binary Semaphore Usage

 From the programmer’s perspective, P and V on a binary
semaphore are just like Acquire and Release on a lock
P(sem)

do whatever stuff requires mutual exclusion; could conceivably
be a lot of code

V(;em)

— same lack of programming language support for correct
usage

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Example: Bounded buffer problem

 AKA “producer/consumer” problem
— there is a circular buffer in memory with N entries
— producer threads insert entries into it (one at a time)
— consumer threads remove entries from it (one at a
time)
* Threads are concurrent

— S0, we must use synchronization constructs to
control access to shared variables describing buffer
state %

- ,
> |] 3

tail head

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Bounded buffer using semaphores
(both binary and counting)

var mutex: semaphore =1 ;mutual exclusion to shared data
empty: semaphore = n ;count of empty buffers (all empty to start)
full: semaphore =0 ;count of full buffers (none full to start)
producer:
P(empty) ; one fewer buffer, block if none available
P(mutex) ; get access to pointers
<add item to buffer>
V(mutex) ; done with pointers
V(full) ; hote one more full buffer
consumer:
P(full) ;wait until there’s a full buffer
P(mutex) :get access to pointers
<remove item from buffer>
V(mutex) ; done with pointers
V(empty) ; note there’s an empty buffer
<use the item>

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Note 1:
| have elided all the code
concerning which is the
first full buffer, which is the
last full buffer, etc.

Note 2:
Try to figure out how to do
this without using counting
semaphores!

Example: Readers/Writers

* Description:

— A single object is shared among several
threads/processes

— Sometimes a thread just reads the object
— Sometimes a thread updates (writes) the object

— We can allow multiple readers at a time
 why?

— We can only allow one writer at a time
 why?

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

Readers/Writers using semaphores

var mutex: semaphore = 1
wrt: semaphore =1
readcount: integer =0

- controls access to readcount

; control entry for a writer or first reader
: hnumber of active readers

writer:
P(wrt) ; any writers or readers?
<perform write operation>
V(wrt) ; allow others
reader:
P(mutex) ; ensure exclusion
readcount++ ; one more reader
if readcount == 1 then P(wrt) ; if we're the first, synch with writers
V(mutex)
<perform read operation>
P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt) ; N0 more readers, allow a writer
V(mutex)
04/28/11

© 2011 Gribble, Lazowska, Levy, Zahorjan

11

Readers/Writers notes

 Notes:
— the first reader blocks on P(wrt) if there is a writer
 any other readers will then block on P(mutex)

— if a waiting writer exists, the last reader to exit
signals the waiting writer

* can new readers get in while a writer is waiting?

— when writer exits, if there is both a reader and writer
waiting, which one goes next?

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Semaphores vs. Locks

Threads that are blocked at the level of program logic
are placed on queues, rather than busy-waiting

Busy-waiting may be used for the “real” mutual
exclusion required to implement P and V

— but these are very short critical sections - totally
independent of application logic

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Condition Variables

« Basic operations:
— Wait()

« wait until some thread does a signal AND release a lock, as an atomic
operation

— Signal()
« if any threads are waiting, wake up one
o (broadcast(): wake them all up)

« signal() is not remembered

— A signal to a condition variable that has no threads waiting is a
no-op

« Qualitative use guideline:

— You wait() when you can't proceed until some shared state
changes

— You signal() whenever shared state changes from “bad” to
MgoodH

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Bounded-buffers with condition
variables

var mutex: lock :mutual exclusion to shared data
freeslot: condition :there's a free slot
fullslol: condition : there's a full slot

producer:
lock(mutex) ; get access to pointers

If (buffer is full) wait(freeslot);
<add item to buffer>

signal(fullslot); Note: There is a subtle bug in

unlock(mutex) ; done with pointers this code!
consumer:

lock(mutex) ;wait until there’s a full buffer

If (buffer is empty) wait(fullslot) ;get access to pointers

<remove item from buffer>
signal(freeslot);
unlock(mutex)

<use the item>

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

The Bug

 Depending on the implementation...

— Between the time a thread is woken up by signal()
and the time it re-acquires the lock, the condition it
Is waiting for may be false again
* Waiting for a thread to put something in the buffer
* A thread does, and signals
 Now another thread comes along and consumes
 The woken thread makes a mistake...

* NOT if (buffer is empty) wait(fullslot)

 INSTEAD while (buffer is empty) wait(fullslot)

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Problems with semaphores, locks,
and condition variables

« They can be used to solve any of the traditional
synchronization problems, but it's easy to make mistkaes
— They're essentially shared global variables
« can be accessed from anywhere (bad software engineering)

— there is no connection between the synchronization variable and the
data being controlled by it

— no control over their use, no guarantee of proper usage
« Condition variables: will there ever be a signal?
« Semaphores: will there be a V()?

« Locks: did you lock when necessary? Unlock at the right time? At all?

« Thus, they are prone to bugs

— We can reduce the chance of bugs by stylizing the use of
synchronization

« The restrictions of the style may lead to inefficiencies, however
— Often language help is useful for this

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Monitors

A monitor is a programming language construct that supports
controlled access to shareé data
— synchronization code is added by the compiler
« why does this help?

A monitor is (essentially) a class in which every method automatically
acquires a lock on entry, and releases it on exit:

— shared data structures (object)
— procedures that operate on the shared data (object methods)
— synchronization between concurrent threads that invoke those procedures

Data can only be accessed from within the monitor, using the
provided procedures

— protects the data from unstructured access
— Prevents ambiguity about what the synchronization variable protects

Addresses the key usability issues that arise with semaphores

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

A monitor

waiting queue of threads
trying to enter the monitor

l

at most one thread
IN monitor at a
time

A 4

/7

shared data

operations (methods)

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

19

Monitors Require Condition Variables

04/28/11

Produce()

Consume()

* Buffer is empty
* Now what?

© 2011 Gribble, Lazowska, Levy, Zahorjan

20

Monitors and Java

Monitors are a somewhat exotic language feature

Java offers something a tiny bit like monitors

— It should be clear to you that they're not monitors in
the full sense at all!

Every Java object contains an intrinsic lock

The sychronized keyword locks that lock

Can be applied to methods, or blocks of statements

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

Synchronized Methods

« Atomic integer is a commonly provided (or built) package

e public class atomicInt {

int value;

public atomicInt(int initval) {
value = initval;

}

public synchronized postIncrement() {
return value++;

}

public synchronized postDecrement() {
return value--;

}

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Synchronized Statements

* You can lock any Object, and have the lock

automatically released when you leave the
block of statements

* void foo(ArraylList list) {

sychronized(list) {
<manipulate the list>
h

}

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

23

Barriers

« Sometimes you want (all) N threads to wait
until they've all reached a synchronization
point

« Example: NxM matrix vector multiply: C = AB
for (i=0; i<N; i++) {

Cli] = 0;

for (j=0; j<M; j++) { ~ One thread
Cli] += AlLllj] * Bljl;

}

}

Wait here until all threads have finished

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

As threaded code

* barrier_init(multBarrier, N+1);
for (i=0; i<N; i++) {
thread start(vectorMultiply, A, B, C, i, M);
}

barrier wait(multBarrier);

(The italicized names are not the pthread names...)

* void vectorMultiply(A,B,C,i,M) {
Cli] = 0;
for (j=0; j<M; j++) C[i] += Alil[j] * BI[j];
barrier wait(multBarrier);

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

Join

« Sometimes you want to wait until a thread has
terminated
— That's what join() is for

e« A CcOommon use:

— Start N threads
— Sitin a loop waiting for thread 1, then thread 2, then ...

It really doesn't matter much which one finishes first, you just
wait in an arbitrary order

« Note: This is not quite the same as using a barrier

— join() waits until threads have terminated, and so given up
all their resources

— A barrier is achieved before threads have terminated

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

26

Summary (in pictures)

lock()
O lock()
8 Lock synchronization
unlock()
—_
O
O
O
unloTk()

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Semaphore Synchronization

signal()

walit() or wait()
O ignal
o signa ()\\\\‘

— 900

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

Condition variable synchronization

lock()

Wait() [unlock()]
signal() |

3 lock()]

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

29

Barrier Synchronization

barrier ()

barrier ()

barrier ()

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

04/28/11

Join Synchronization

exit()

exit()

© 2011 Gribble, Lazowska, Levy, Zahorjan

31

	CSE 451: Operating Systems Spring 2006 Module 7 Semaphores and Monitors
	Slide 2
	Slide 3
	Semaphores
	Blocking in semaphores
	Two types of semaphores
	Usage
	Example: Bounded buffer problem
	Bounded buffer using semaphores (both binary and counting)
	Example: Readers/Writers
	Readers/Writers using semaphores
	Readers/Writers notes
	Semaphores vs. Locks
	Slide 14
	Slide 15
	Slide 16
	Problems with semaphores (and locks)
	One More Approach: Monitors
	A monitor
	Example: Bounded Buffer Scenario
	Monitor Summary
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

