
CSE 451: Operating Systems
 Spring 2011

Module 7
Semaphores and Monitors

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

Last Time: Locks

• acquire()/release() operations
– In complicated code, can be hard to get right

• Some implementations provide “recursive locks”

• Some implementations complain if one acquires, another releases
– Some applications rely on one thread acquiring, another releasing

• Come in spinning and blocking varieties
– Spin if you expect a short wait and there are multiple cores

– Block if only one CPU/core or you expect long waits

• Blocking involves an update to a queue, i.e., a critical
section
– So, still need spin locks, if just to implement blocking locks

This Time: Other Synchronization
Primitivies

• (Synchronization is a way of putting happens-before arcs into the
thread graph)

• Semaphores
– a generalization of blocking locks

• Condition variables
– A way to wait for an event (while in a critical section)

• Monitors
– Language (or convention)-based way to never forget to lock or unlock

• Barriers
– Synchronize n threads in a single statement

• Join
– Wait for a thread to terminate

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Semaphores

• Semaphore = a synchronization primitive
– higher level of abstraction than locks
– invented by Dijkstra in 1968, as part of the THE

operating system

• A semaphore is:
– a variable that is manipulated through two

operations,
P and V (Dutch for “wait” and “signal”)

• P(sem) (wait/down)
– block until sem > 0, then subtract 1 from sem and

proceed

• V(sem) (signal/up)
– add 1 to sem

• Do these operations atomically

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Blocking in semaphores

• Each semaphore has an associated queue of threads
– when P (sem) is called by a thread,

• if sem was “available” (>0), decrement sem and let thread
continue

• if sem was “unavailable” (<=0), place thread on associated
queue; run some other thread

– when V (sem) is called by a thread
• if thread(s) are waiting on the associated queue, unblock one

– place it on the ready queue
– might as well let the “V-ing” thread continue execution

• otherwise (when no threads are waiting on the sem),
increment sem

– the signal is “remembered” for next time P(sem) is called

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

Two types of semaphores

• Binary semaphore (aka mutex semaphore)
– sem is initialized to 1

– guarantees mutually exclusive access to resource (e.g., a
critical section of code)

– only one thread/process allowed entry at a time

– Logically equivalent to a blocking lock

• Counting semaphore
– Let N threads into “critical section,” not just one

• Why? We'll see in a minute...

– sem is initialized to N
• N = number of units available

– represents resources with many (identical) units available

– allows threads to enter as long as more units are available

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

Binary Semaphore Usage

• From the programmer’s perspective, P and V on a binary
semaphore are just like Acquire and Release on a lock

P(sem)
.
.
.
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code
.
.
.

V(sem)

– same lack of programming language support for correct
usage

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

Example: Bounded buffer problem

• AKA “producer/consumer” problem
– there is a circular buffer in memory with N entries
– producer threads insert entries into it (one at a time)
– consumer threads remove entries from it (one at a

time)

• Threads are concurrent
– so, we must use synchronization constructs to

control access to shared variables describing buffer
state

headtail

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

Bounded buffer using semaphores
(both binary and counting)

Note 1:
I have elided all the code
concerning which is the
first full buffer, which is the
last full buffer, etc.

Note 2:
Try to figure out how to do
this without using counting
semaphores!

var mutex: semaphore = 1 ;mutual exclusion to shared data
 empty: semaphore = n ;count of empty buffers (all empty to start)
 full: semaphore = 0 ;count of full buffers (none full to start)

producer:
 P(empty) ; one fewer buffer, block if none available
 P(mutex) ; get access to pointers
 <add item to buffer>
 V(mutex) ; done with pointers
 V(full) ; note one more full buffer

consumer:
 P(full) ;wait until there’s a full buffer
 P(mutex) ;get access to pointers
 <remove item from buffer>
 V(mutex) ; done with pointers
 V(empty) ; note there’s an empty buffer
 <use the item>

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Example: Readers/Writers

• Description:
– A single object is shared among several

threads/processes
– Sometimes a thread just reads the object
– Sometimes a thread updates (writes) the object

– We can allow multiple readers at a time
• why?

– We can only allow one writer at a time
• why?

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

Readers/Writers using semaphores
var mutex: semaphore = 1 ; controls access to readcount
 wrt: semaphore = 1 ; control entry for a writer or first reader
 readcount: integer = 0 ; number of active readers

writer:
P(wrt) ; any writers or readers?

<perform write operation>
V(wrt) ; allow others

reader:
P(mutex) ; ensure exclusion
 readcount++ ; one more reader
 if readcount == 1 then P(wrt) ; if we’re the first, synch with writers
V(mutex)

<perform read operation>
P(mutex) ; ensure exclusion
 readcount-- ; one fewer reader
 if readcount == 0 then V(wrt) ; no more readers, allow a writer
V(mutex)

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Readers/Writers notes

• Notes:
– the first reader blocks on P(wrt) if there is a writer

• any other readers will then block on P(mutex)

– if a waiting writer exists, the last reader to exit
signals the waiting writer

• can new readers get in while a writer is waiting?

– when writer exits, if there is both a reader and writer
waiting, which one goes next?

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Semaphores vs. Locks

• Threads that are blocked at the level of program logic
are placed on queues, rather than busy-waiting

• Busy-waiting may be used for the “real” mutual
exclusion required to implement P and V
– but these are very short critical sections – totally

independent of application logic

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Condition Variables

• Basic operations:
– Wait()

• wait until some thread does a signal AND release a lock, as an atomic
operation

– Signal()
• if any threads are waiting, wake up one

• (broadcast(): wake them all up)

• signal() is not remembered
– A signal to a condition variable that has no threads waiting is a

no-op

• Qualitative use guideline:
– You wait() when you can't proceed until some shared state

changes

– You signal() whenever shared state changes from “bad” to
“good”

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

Bounded-buffers with condition
variables

Note: There is a subtle bug in
this code!

var mutex: lock ;mutual exclusion to shared data
 freeslot: condition ;there's a free slot
 fullslol: condition ; there's a full slot

producer:
 lock(mutex) ; get access to pointers
 If (buffer is full) wait(freeslot);
 <add item to buffer>
 signal(fullslot);
 unlock(mutex) ; done with pointers

consumer:
 lock(mutex) ;wait until there’s a full buffer
 If (buffer is empty) wait(fullslot) ;get access to pointers
 <remove item from buffer>
 signal(freeslot);
 unlock(mutex)
 <use the item>

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

The Bug

• Depending on the implementation...
– Between the time a thread is woken up by signal()

and the time it re-acquires the lock, the condition it
is waiting for may be false again

• Waiting for a thread to put something in the buffer
• A thread does, and signals
• Now another thread comes along and consumes
• The woken thread makes a mistake...

• NOT if (buffer is empty) wait(fullslot)

• INSTEAD while (buffer is empty) wait(fullslot)

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Problems with semaphores, locks,
and condition variables

• They can be used to solve any of the traditional
synchronization problems, but it's easy to make mistkaes
– They're essentially shared global variables

• can be accessed from anywhere (bad software engineering)

– there is no connection between the synchronization variable and the
data being controlled by it

– no control over their use, no guarantee of proper usage
• Condition variables: will there ever be a signal?

• Semaphores: will there be a V()?

• Locks: did you lock when necessary? Unlock at the right time? At all?

• Thus, they are prone to bugs
– We can reduce the chance of bugs by stylizing the use of

synchronization
• The restrictions of the style may lead to inefficiencies, however

– Often language help is useful for this

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Monitors

• A monitor is a programming language construct that supports
controlled access to shared data
– synchronization code is added by the compiler

• why does this help?

• A monitor is (essentially) a class in which every method automatically
acquires a lock on entry, and releases it on exit:
– shared data structures (object)
– procedures that operate on the shared data (object methods)
– synchronization between concurrent threads that invoke those procedures

• Data can only be accessed from within the monitor, using the
provided procedures
– protects the data from unstructured access
– Prevents ambiguity about what the synchronization variable protects

• Addresses the key usability issues that arise with semaphores

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

A monitor

shared data

waiting queue of threads
trying to enter the monitor

operations (methods)at most one thread
in monitor at a

time

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Monitors Require Condition Variables

Produce()

Consume()

• Buffer is empty
• Now what?

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

Monitors and Java

• Monitors are a somewhat exotic language feature

• Java offers something a tiny bit like monitors
– It should be clear to you that they're not monitors in

the full sense at all!

• Every Java object contains an intrinsic lock

• The sychronized keyword locks that lock

• Can be applied to methods, or blocks of statements

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Synchronized Methods

• Atomic integer is a commonly provided (or built) package

• public class atomicInt {
 int value;
 public atomicInt(int initVal) {
 value = initVal;
 }
 public synchronized postIncrement() {
 return value++;
 }
 public synchronized postDecrement() {
 return value--;
 }
 …
 }

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Synchronized Statements

• You can lock any Object, and have the lock
automatically released when you leave the
block of statements

• void foo(ArrayList list) {
 …
 sychronized(list) {
 <manipulate the list>
 }
}

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Barriers

• Sometimes you want (all) N threads to wait
until they've all reached a synchronization
point

• Example: NxM matrix vector multiply: C = AB
for (i=0; i<N; i++) {

 C[i] = 0;
 for (j=0; j<M; j++) {

 C[i] += A[i][j] * B[j];
 }
}

One thread

Wait here until all threads have finished

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

As threaded code

• barrier_init(multBarrier, N+1);
for (i=0; i<N; i++) {

thread_start(vectorMultiply, A, B, C, i, M);
}
barrier_wait(multBarrier);

(The italicized names are not the pthread names...)

• void vectorMultiply(A,B,C,i,M) {
 C[i] = 0;
 for (j=0; j<M; j++) C[i] += A[i][j] * B[j];
 barrier_wait(multBarrier);

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

Join

• Sometimes you want to wait until a thread has
terminated
– That's what join() is for

• A common use:
– Start N threads

– Sit in a loop waiting for thread 1, then thread 2, then …
• It really doesn't matter much which one finishes first, you just

wait in an arbitrary order

• Note: This is not quite the same as using a barrier
– join() waits until threads have terminated, and so given up

all their resources

– A barrier is achieved before threads have terminated

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Summary (in pictures)

lock()

unlock()

lock()

unlock()

Lock synchronization

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

Semaphore Synchronization

signal()

wait()

signal()

wait()or

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 29

Condition variable synchronization

signal()

Wait() [unlock()]

lock()

[lock()]

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 30

Barrier Synchronization

barrier()

barrier()

barrier()

04/28/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 31

Join Synchronization

join() exit()

exit()

join()

	CSE 451: Operating Systems Spring 2006 Module 7 Semaphores and Monitors
	Slide 2
	Slide 3
	Semaphores
	Blocking in semaphores
	Two types of semaphores
	Usage
	Example: Bounded buffer problem
	Bounded buffer using semaphores (both binary and counting)
	Example: Readers/Writers
	Readers/Writers using semaphores
	Readers/Writers notes
	Semaphores vs. Locks
	Slide 14
	Slide 15
	Slide 16
	Problems with semaphores (and locks)
	One More Approach: Monitors
	A monitor
	Example: Bounded Buffer Scenario
	Monitor Summary
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

