
CSE 451: Operating Systems
 Spring 2011 

Module 6
Synchronization

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534



Temporal Relations: Key Concept 
Review

• Instructions executed by a single thread are totally 
ordered
– A < B< C < …

• Absent synchronization, instructions executed by 
distinct threads are simultaneous
– (not A < A')  and (not A' < A)

• A sequence of instructions is atomic if the effects of all 
of them appear to occur at once as viewed by any 
other (correctly operating) thread

• (Nearly all) single machine instructions are atomic
– Write x

– Read y



Example: In the beginning...
main()

A

B

pthread_create()

A'
foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could 
be multiple CPUs (cores).



Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if 
executed simultaneously are called critical sections

• Mutual exclusion means “not simultaneous”
– (A < B) or (B < A)

– We don't care which

• Forcing mutual exclusion between two critical section 
executions is sufficient to ensure correct execution
– It's not always necessary (concurrent executions may sometimes get 

correct results by luck),  but it's impractical to try to exploit that

• One way to guarantee mutually exclusive execution is using 
locks



Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation
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When Do Critical Sections Arise?

• Well... the simple answer is “whenever simultaneous 
execution could result in incorrect answers,” but that isn't 
very helpful

• One common pattern:
– read-modify-write of

– A shared value (variable)

– In code that can be executed concurrently
Note: There may be only one copy of the code (e.g., a procedure), 
but it can be executed by more than one thread at a time

• Shared variable:
– Globals and heap allocated

– NOT local variables

– Note: never give a reference to a stack allocated (local) variable to 
another thread (unless you're superhumanly careful...)
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The classic example

• Suppose we have to implement a function to 
withdraw money from a bank account:

int withdraw(account, amount) {

  int balance = get_balance(account);    // read

  balance -= amount;                     // modify

  put_balance(account, balance);         // write

  return balance;

}

• Now suppose that you and your S.O. share a 
bank account with a balance of $100.00
– what happens if you both go to separate ATM 

machines, and simultaneously withdraw $10.00 from 
the account?
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• Assume the bank's application is multi-
threaded

• A random thread is assigned a transaction 
when it is submitted

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}
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• The problem is that the execution of the two 
threads can be interleaved:

• What’s the account balance after this 
sequence?

• How often is this sequence likely to occur?

Interleaved schedules

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Time context switch

context switch
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• Which interleavings are ok?  Which are not?

Aside: Other Execution Orders

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}
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int xfer(from, to, amt) {

  int bal = withdraw(from, amt);

  withdraw( to, -amt );

  return bal;

}

How About Now?

int xfer(from, to, amt) {

  int bal = withdraw(from, amt);

  withdraw( to, -amt );

  return bal;

}

• Morals:
– Interleavings are hard to reason about

• We make a lot of mistakes
• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually 
exclusive execution is... “easier”
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  i++;

Another Classic Example

  i++;
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Final Classic Example

head

next next next

for (p=head; p; p = p->next ) {
  <examine *p>
}

while (head) {
  oldHead = head;
  head = head->next;
  free(oldHead);
}
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“Critical section solution” 
requirements

• Critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot 

prevent thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will 

eventually enter the critical section
– assumes threads eventually leave critical sections

• vs. fairness?

– performance
• the overhead of entering and exiting the critical section is 

small with respect to the work being done within it
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Mechanisms for building critical sections

• Locks (today)

– very primitive, minimal semantics; used to build others

• Semaphores (tomorrow)

– basic, easy to get the hang of, hard to program with

• Monitors (tomorrow)

– high level, requires language support, implicit operations
– easy to program with; Java “synchronized()” as an 

example

• Messages (day after tomorrow)

– simple model of communication and synchronization 
based on (atomic) transfer of data across a channel

– direct application to distributed systems
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Locks, But First...

• A possible critical section solution is to 
arrange for all executions to occur on a 
single thread

– E.g., use thread n where 
n == account % #threads

– This turns a sharable variable into an un-
shared variable

• Pros:

– Simple

– Fast

• Cons:

– Load balancing among threads

– What to do if the CS involves two accounts 
(e.g., xfer())?

– Assigning tasks to threads probably involves 
a critical section (!) 

• This idea is useful on multi-cores, and 
perhaps even more common in distributed 
systems

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}

int withdraw(account, amount) {

  int balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  return balance;

}
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Locks

• Locks are memory objects with two operations
– acquire(): obtain the right to enter the critical 

section
– release(): give up the right to be in the critical 

section

• acquire() prevents progress of the thread 
until the lock can be acquired

Note: terminology varies.  In project 2, we use LOCK and UNLOCK 
for acquire/release, and “acquire” and “release” for memory allocation 
operations!
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Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)
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Using locks

• What happens when green tries to acquire the lock?

• Why is the “return” outside the critical section?
– is this ok?

int withdraw(account, amount) {

  acquire(lock);

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  release(lock);

  return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n
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Spinlocks

• How do we implement locks?  Here’s one 
attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock_t {

  int held = 0;

} lock;

void acquire(lock) {

   while (lock->held);

   lock->held = 1;

}

void release(lock) {

  lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock
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Implementing locks (cont.)

• Problem is that implementation of locks has 
critical sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be 
interrupted

• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …

– disable/reenable interrupts
• to prevent context switches
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Spinlocks redux: Hardware Test-and-
Set

• CPU provides the following as one atomic 
instruction:

• Remember, this is a single instruction…

bool test_and_set(bool *flag) {

  bool old = *flag;

  *flag = True;

  return old;

}
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• So, to fix our broken spinlocks, do:

Implementing Locks Using Test-and-Set

struct lock {

  int held = 0;

}

void acquire(lock) {

   while(test_and_set(&lock->held));

}

void release(lock) {

  lock->held = 0;

}

mutual exclusion?
progress?
bounded waiting?
performance?
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Reminder of use …

• How does a thread spinning in an “acquire” (that is, 
stuck in a test-and-set loop) yield the CPU?
– calls yield( ) (spin-then-block) 

– there’s an involuntary context switch

int withdraw(account, amount) {

  acquire(lock);

  balance = get_balance(account);

  balance -= amount;

  put_balance(account, balance);

  release(lock);

  return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n
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Problems with Locks

• Spinlocks work, but can be horribly wasteful!
– if  the thread holding the lock is not running, you'll spin for a scheduling 

quantum

• Certainly the case on a single-core machine

– (pthread_spin_t)

• Blocking locks work, but can be horribly wasteful!
– If the lock is busy, there's a two context switch overhead cost to be paid to 

acquire it, minimum

• The lock might be busy for only a few cycles, so it could have been cheaper to spin

– (pthread_mutex_t)

• Spin-then-block locks
– Spin for a little while (10's or 100's of cycles), then block

– Why?

• If you know the typical lock holding time is small, and it's been 100's of cycles, odds 
are the lock holder isn't currently running

– This is an example of residual life that increases (steeply) after some short amount of time 
has elapsed
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Race Conditions

• Informally, we say a program has a race 
condition (aka “data race”) if  the result of an 
execution depends on timing
– i.e., is non-deterministic

• Typical symptoms:
– I run it on the same data, and sometimes it prints 0 

and sometimes it prints 4
– I run it on the same data, and sometimes it prints 0 

and sometimes it crashes
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Race Detectors

• There are tools that try to detect race 
conditions
– We'll use one called helgrind

• They need a formal definition of what a race is
– The definition varies, but the key is two accesses to a 

shared variable that are “simultaneous” (not 
ordered), at least one of which is a write

• Note: the formal definition can result in many 
false positives (detections of non-problems)
– Example: two threads write 0 to shared variable 
total
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How They Work

• First of all, they're still kind of exotic / experimental / primitive

• Basically, they monitor thread executions to construct a “happens 
before” thread graph relating them
– Happens-before arcs are introduced by things like locks, which they 

recognize as a call to pthread_mutex_lock()

• They then detect unsynchronized accesses by annotating each 
word/byte of memory with tags indicating where in the thread 
synchronization graph the operations arose

• They manage that by simulating the hardware instructions...

• They can be “a wee slow”
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Race Detection Example

Read total

Write total

Read total

No race
(ordered)

Race

Synchronization 
point

Read total
No race
(read-read)
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What's Next?

• Synchronization introduces temporal ordering
– E.g., adds a “not simultaneous” edge

• Critical sections

– Or adds a “happens before” edge to the thread graph
• Other kinds of synchronization

• Adding synchronization can eliminate races
– That's handy!

• There are other synchronization primitives
– For mutual exclusion
– For “happens before”

• We'll have a look at some...
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