
CSE 451: Operating Systems
 Spring 2011

Module 6
Synchronization

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

Temporal Relations: Key Concept
Review

• Instructions executed by a single thread are totally
ordered
– A < B< C < …

• Absent synchronization, instructions executed by
distinct threads are simultaneous
– (not A < A') and (not A' < A)

• A sequence of instructions is atomic if the effects of all
of them appear to occur at once as viewed by any
other (correctly operating) thread

• (Nearly all) single machine instructions are atomic
– Write x

– Read y

Example: In the beginning...
main()

A

B

pthread_create()

A'
foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if
executed simultaneously are called critical sections

• Mutual exclusion means “not simultaneous”
– (A < B) or (B < A)

– We don't care which

• Forcing mutual exclusion between two critical section
executions is sufficient to ensure correct execution
– It's not always necessary (concurrent executions may sometimes get

correct results by luck), but it's impractical to try to exploit that

• One way to guarantee mutually exclusive execution is using
locks

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

When Do Critical Sections Arise?

• Well... the simple answer is “whenever simultaneous
execution could result in incorrect answers,” but that isn't
very helpful

• One common pattern:
– read-modify-write of

– A shared value (variable)

– In code that can be executed concurrently
Note: There may be only one copy of the code (e.g., a procedure),
but it can be executed by more than one thread at a time

• Shared variable:
– Globals and heap allocated

– NOT local variables

– Note: never give a reference to a stack allocated (local) variable to
another thread (unless you're superhumanly careful...)

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

The classic example

• Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw(account, amount) {

 int balance = get_balance(account); // read

 balance -= amount; // modify

 put_balance(account, balance); // write

 return balance;

}

• Now suppose that you and your S.O. share a
bank account with a balance of $100.00
– what happens if you both go to separate ATM

machines, and simultaneously withdraw $10.00 from
the account?

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

• Assume the bank's application is multi-
threaded

• A random thread is assigned a transaction
when it is submitted

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

• The problem is that the execution of the two
threads can be interleaved:

• What’s the account balance after this
sequence?

• How often is this sequence likely to occur?

Interleaved schedules

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Time context switch

context switch

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

• Which interleavings are ok? Which are not?

Aside: Other Execution Orders

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 withdraw(to, -amt);

 return bal;

}

How About Now?

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 withdraw(to, -amt);

 return bal;

}

• Morals:
– Interleavings are hard to reason about

• We make a lot of mistakes
• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually
exclusive execution is... “easier”

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

 i++;

Another Classic Example

 i++;

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Final Classic Example

head

next next next

for (p=head; p; p = p->next) {
 <examine *p>
}

while (head) {
 oldHead = head;
 head = head->next;
 free(oldHead);
}

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

“Critical section solution”
requirements

• Critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot

prevent thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will

eventually enter the critical section
– assumes threads eventually leave critical sections

• vs. fairness?

– performance
• the overhead of entering and exiting the critical section is

small with respect to the work being done within it

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

Mechanisms for building critical sections

• Locks (today)

– very primitive, minimal semantics; used to build others

• Semaphores (tomorrow)

– basic, easy to get the hang of, hard to program with

• Monitors (tomorrow)

– high level, requires language support, implicit operations
– easy to program with; Java “synchronized()” as an

example

• Messages (day after tomorrow)

– simple model of communication and synchronization
based on (atomic) transfer of data across a channel

– direct application to distributed systems

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Locks, But First...

• A possible critical section solution is to
arrange for all executions to occur on a
single thread

– E.g., use thread n where
n == account % #threads

– This turns a sharable variable into an un-
shared variable

• Pros:

– Simple

– Fast

• Cons:

– Load balancing among threads

– What to do if the CS involves two accounts
(e.g., xfer())?

– Assigning tasks to threads probably involves
a critical section (!)

• This idea is useful on multi-cores, and
perhaps even more common in distributed
systems

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Locks

• Locks are memory objects with two operations
– acquire(): obtain the right to enter the critical

section
– release(): give up the right to be in the critical

section

• acquire() prevents progress of the thread
until the lock can be acquired

Note: terminology varies. In project 2, we use LOCK and UNLOCK
for acquire/release, and “acquire” and “release” for memory allocation
operations!

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

Using locks

• What happens when green tries to acquire the lock?

• Why is the “return” outside the critical section?
– is this ok?

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Spinlocks

• How do we implement locks? Here’s one
attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock_t {

 int held = 0;

} lock;

void acquire(lock) {

 while (lock->held);

 lock->held = 1;

}

void release(lock) {

 lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

Implementing locks (cont.)

• Problem is that implementation of locks has
critical sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be
interrupted

• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …

– disable/reenable interrupts
• to prevent context switches

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Spinlocks redux: Hardware Test-and-
Set

• CPU provides the following as one atomic
instruction:

• Remember, this is a single instruction…

bool test_and_set(bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

• So, to fix our broken spinlocks, do:

Implementing Locks Using Test-and-Set

struct lock {

 int held = 0;

}

void acquire(lock) {

 while(test_and_set(&lock->held));

}

void release(lock) {

 lock->held = 0;

}

mutual exclusion?
progress?
bounded waiting?
performance?

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Reminder of use …

• How does a thread spinning in an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)

– there’s an involuntary context switch

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

Problems with Locks

• Spinlocks work, but can be horribly wasteful!
– if the thread holding the lock is not running, you'll spin for a scheduling

quantum

• Certainly the case on a single-core machine

– (pthread_spin_t)

• Blocking locks work, but can be horribly wasteful!
– If the lock is busy, there's a two context switch overhead cost to be paid to

acquire it, minimum

• The lock might be busy for only a few cycles, so it could have been cheaper to spin

– (pthread_mutex_t)

• Spin-then-block locks
– Spin for a little while (10's or 100's of cycles), then block

– Why?

• If you know the typical lock holding time is small, and it's been 100's of cycles, odds
are the lock holder isn't currently running

– This is an example of residual life that increases (steeply) after some short amount of time
has elapsed

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

Race Conditions

• Informally, we say a program has a race
condition (aka “data race”) if the result of an
execution depends on timing
– i.e., is non-deterministic

• Typical symptoms:
– I run it on the same data, and sometimes it prints 0

and sometimes it prints 4
– I run it on the same data, and sometimes it prints 0

and sometimes it crashes

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Race Detectors

• There are tools that try to detect race
conditions
– We'll use one called helgrind

• They need a formal definition of what a race is
– The definition varies, but the key is two accesses to a

shared variable that are “simultaneous” (not
ordered), at least one of which is a write

• Note: the formal definition can result in many
false positives (detections of non-problems)
– Example: two threads write 0 to shared variable
total

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

How They Work

• First of all, they're still kind of exotic / experimental / primitive

• Basically, they monitor thread executions to construct a “happens
before” thread graph relating them
– Happens-before arcs are introduced by things like locks, which they

recognize as a call to pthread_mutex_lock()

• They then detect unsynchronized accesses by annotating each
word/byte of memory with tags indicating where in the thread
synchronization graph the operations arose

• They manage that by simulating the hardware instructions...

• They can be “a wee slow”

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 29

Race Detection Example

Read total

Write total

Read total

No race
(ordered)

Race

Synchronization
point

Read total
No race
(read-read)

04/24/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 30

What's Next?

• Synchronization introduces temporal ordering
– E.g., adds a “not simultaneous” edge

• Critical sections

– Or adds a “happens before” edge to the thread graph
• Other kinds of synchronization

• Adding synchronization can eliminate races
– That's handy!

• There are other synchronization primitives
– For mutual exclusion
– For “happens before”

• We'll have a look at some...

	CSE 451: Operating Systems Spring 2006 Module 6 Synchronization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	The classic example
	Slide 8
	Interleaved schedules
	Other Execution Orders
	How About Now?
	And This?
	Slide 13
	Critical section requirements
	Mechanisms for building critical sections
	Slide 16
	Slide 17
	Slide 18
	Using locks
	Spinlocks
	Implementing locks (cont.)
	Spinlocks redux: Test-and-Set
	Slide 23
	Reminder of use …
	Problems with spinlocks
	The crux of the matter
	Slide 27
	Slide 28
	Slide 29
	Slide 30

