
CSE 451: Operating Systems

Spring 2010

Module 2

Architectural Support for

Operating Systems

John Zahorjan
zahorjan@cs.washington.edu

534 Allen Center

Outline

• Part 1: Basics of Architecture / OS Interaction
– Largely a review of CSE 378 material

• Part 2: The Hardware Architecture and Virtual
Machines

– Note: We'll need the basics of the Part 1 basics to
understand Part 2...

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

• Processing power
– doubling every 18 months

– 60% improvement each year

– factor of 100 every decade

– 1980: 1 MHz Apple II+ == $2,000 ($5200)
• 1980 also 1 MIPS VAX-11/780 == $120,000 ($312K)

– 2011: 3.0GHz Quad Core == $530

Even coarse architectural trends
impact tremendously the design of systems

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Power Consumption

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Primary Memory / Disk Capacity

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

Primary Memory Bandwidth

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

Relative Speeds

http://www.cs.cmu.edu/~amarp/cpu-io-gap.png

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 82

Storage Latency:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
Robot

109

10 6

Olympia

This Building

This Room
My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

 © 2004 Jim Gray, Microsoft Corporation

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

A Current Trend: Solid State Disks

http://www.embeddedstar.com/articles/2005/2/article20050207-4.html

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Lower-level architecture affects the OS
dramatically

• Operating system functionality is dictated, at least in part,
by the underlying hardware architecture
– includes instruction set (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

• Architectural support can vastly simplify (or complicate!)
OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked support for

virtual memory, in part because at that time PCs lacked necessary
hardware support

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation

– synchronization instructions (e.g., atomic test-and-set)

– memory protection

– I/O control operations

– interrupts and exceptions

– protected modes of execution (kernel vs. user)

– protected instructions

– system calls (and software interrupts)

• [2006] virtualization architectures
– Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-architecture-usage.htm

– AMD: http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Protected instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)

• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.

• why?

– manipulate special ‘mode bits’
• interrupt priority level

• why?

– halt instruction
• why?

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

OS protection

• So how does the processor know if a protected
instruction should be allowed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel (privileged) mode (OS == kernel)

• Protected instructions can only be executed in kernel
mode
– what happens if user mode executes a protected

instruction?

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Crossing protection boundaries

• User programs must call an OS procedure to do something privileged
– OS defines a set of system calls

– System calls act like protected procedure calls

• A syscall instruction atomically:
– Saves the current PC

– Sets the PC to a handler address

• Writing the handler address is a privileged operation

– Sets the execution mode to privileged

• With that, it's a lot like local procedure call (jal):
– Caller puts arguments in a place callee expects (registers or stack)

• One of the args is a syscall number, indicating which OS function to invoke

– Callee (OS) saves caller’s state (regs, other control info) so it can use CPU

– OS function code runs

• OS must verify caller’s arguments (e.g., pointers)

– OS returns using a special instruction (e.g., ERET – i.e., not JR)

• Atomically sets PC to return address and sets execution mode to user

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

A kernel crossing illustrated

user mode

kernel mode

Firefox: syscall instruction

save app state;
verify syscall number
find read() handler in
vector table

PC = saved PC;
enter user mode

trap handler

read() kernel routine

Set up args, including syscall number for “read”

Verify args;
Execute read()

Set up return values
Restore app state

ERET instruction

Save user PC;
PC = trap handler address

enter kernel mode

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

System call issues

• What would be wrong if syscall worked like
subroutine call, with the caller specifying the next
PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments
to or results from system calls?

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Exception Handling and Protection

• All entries to the OS occur via the mechanism just shown
– Acquiring privilege mode execution and branching to the trap handler are inseparable

• Terminology:
– Interrupt: asynchronous; caused by an external device

– Exception: synchronous; unexpected problem with instruction

– Trap: synchronous; intended transition to OS due to an instruction

• Privileged instructions and resources are the basis for most everything:
– Memory protection

– Protected I/O

– Limiting user resource consumption

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Memory protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security

– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

I/O control

• How does the kernel start an I/O?
• special I/O instructions (privileged operation)
• memory-mapped I/O (privileged memory)

• How does the OS know an I/O operation has
finished?
– Polling (sit in loop asking device if it's done)

– Interrupt (“get back to me when you're finished”)

• Interrupts are basis for asynchronous I/O
– OS starts IO operation, then goes on doing whatever
– device performs an operation asynchronously to CPU activity
– device sends an interrupt signal on bus when done
– Interrupt causes a kernel entry

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Protected CPU Use: Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)

– use a hardware countdown timer
• Generates an interrupt when it has counted down to 0

– before it transfers to a user process, the OS sets the
countdown timer

• E.g., sets a number that will cause an interrupt in 10 msec.

– now either the user process invokes the OS within the next
10 msec. or the timer goes off

• Either way, the OS has a chance to choose a different process
to “dispatch” next

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

Part 2: Architecture and Virtual Machines

• Virtual machines date back to the 1960's
– IBM has had a commercial product since then

• A virtual machine is an efficient, software produced “hardware”
execution environment
– Efficient: virtual machine user processes run directly on the physical CPU

• Eliminates Java or other software simulators

– Hardware execution environment: any code that would run on an identically
configured physical system will run on the virtual machine, including an OS

• Because each is like a separate hardware machine, they
encapsulate complete namespaces for all resources
– No sharing of names ⇒ Complete isolation

• They've undergone a huge resurgence the last decade

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Virtual Machines: The Layered View

Hardware

Virtual Machine Monitor

OS OSGuest OS's

User
processes User mode

execution

Kernel mode
execution

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Temporal Snapshots

CPU CPU

OS

The user process
is executing in
user mode, as

expected

The guest OS is
executing in user
mode, which it
isn't expecting

CPU

VMM

CPU

OS

The VMM is
executing in

privileged mode,
which it is
expecting

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Basic Ideas

• When any kind of exception or interrupt occurs, we'll end up in the
VMM, rather than the guest OS
– VMM simulates state changes that would have been made by the hardware,

then restarts VM at the guest OS handler address

• E.g., stuffs the saved PC where the architecture says it should be

• When the guest OS tries to execute a privileged instruction:
– Same thing

• What's so hard?
– Not all instructions that require VMM intervention may be privileged

• Depends on the architecture

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

An Example Problem

• Suppose the ERET instruction (return to user process after handling exception)
is not privileged

– ERET sets the PC to the saved PC, and

– Sets CPU privilege mode to user

– There doesn't seem to be a reason to prevent user processes from doing that (even if there's
no reason for them to want to)

• The problem for VMMs:

– They have to track the virtual CPU protection level to know how to respond to a privileged
instruction exception

• When the virtual CPU state is privileged, the VMM should execute the effect of the privileged
instruction

• When it's user, it should execute the effect of a privileged instruction exception on the virtual
machine

– They therefore have to know when the guest OS executes an ERET

• Whether or not virtualization is possible depends on the hardware architecture

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

“Formal Requirements for Virtualizable
Third Generation Architectures”

• Popek and Goldberg, 1974
– A local copy is available at

http://www.cs.washington.edu/education/courses/cse451/11sp/protected/popekGoldberg.pdf

• A virtual machine is:
– Efficient: only minor slowdowns for user processes

– Isolated: the VMM controls physical resource allocation, not the
guest OS

– A Duplicate: programs get the same results as on physical
machines, modulo resource availability and timing issues

• Virtual machine configuration is smaller than the physical machine
(less memory, less disk, …)

• Virtual machine may have more or fewer devices

– More disks, for example

http://www.cs.washington.edu/education/courses/cse451/11sp/protected/popekGoldberg.pdf

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

When Can An Architecture Be Virtualized?

• It helps to identify three classes of instructions

– Privileged
• Cause a trap when executed in user mode

– Sensitive
• Control Sensitive

– Instruction changes machine mode (user/privileged) or control
settings (e.g., memory mapping)

• Behavior Sensitive
– Instruction gets different results (including next PC value) depending

on machine mode, or the real addresses of things

» S/360 Load Real Address (LRA) instruction

– Innocuous
– Everything else

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

Formal Results

• THEOREM 1. For any conventional third generation computer, a
virtual machine monitor may be constructed if the set of sensitive
instructions for that computer is a subset of the set of privileged
instructions.

• (Theorem 2: If you can virtualize, you can recursively virtualize.)

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 29

x86 Architecture

• Doesn't meet the Popek & Goldberg virtualization criteria

• There are many reasons, but most of them stem from behavior
sensitive instructions that don't fault in user mode

– These are “safe” operations, when not implementing virtual machines, and so
not privileged

– E.g., reading control values (like page table pointers) is not a privileged
operation

• The physical page table pointer registers must be set to what the
VMM wants, not what the guest OS expects

– If the guest OS reads them, there's no chance for the VMM to fix up the results
of the read, and the guest OS gets confused

• So, how is the x86 being virtualized?

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 30

Virtualizing the x86: Software Approach

• Basic idea (as always):
– Execute innocuous instructions natively

– Trap on sensitive instructions and simulate their effect

• How do we find the sensitive instructions?
– Once the instructions are running natively, there's no trap when needed

– Could simulate all instructions, but...

• That isn't really a virtual machine, in the sense we mean here, because it's too slow

• Approach: find them statically, not dynamically
– “Read the source,” not the stream of executing instructions

– When you find a sensitive instruction...

• What do we need to do here?

– Remember, I want the innocuous instructions to execute natively, and the sensitive ones
are hiding in their midst

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 31

Binary Rewriting

• The VMM will have control whenever a code page is being loaded
– Loading code involves setting page table permissions

– That involves a privileged instruction

• When the page is loaded
– Scan the instructions it contains, looking for the sensitive instructions

– Replace them with something that will cause a fault

– Remember the instruction that used to be there

– Now allow native execution of the code page

• This is the original approach used to grapple with the x86 by the
VMMs you've heard of (e.g., VMWare), and is still in use

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 32

Virtualizing x86: The Hardware Approach

• Both Intel and AMD have developed virtualization extensions to
the architecture (starting ~2006)
– Intel: VT-x

– AMD: AMD-V

• To get correctness, they introduce new machine modes and
duplicate the problematic state
– New modes: VMX root (actual root) and VMX non-root (you think you're root, but

you're not)

– One sees the actual control information; the other sees a decoy copy, whose
contents are controlled by the VMM

• Turns a behavior sensitive instruction into an innocuous one

– Additionally, many previously non-faulting instructions cause a fault when in VMS
non-root mode

• The extensions also provide some efficiency improvements
– E.g., they know that guest OS and VMM page tables need to be composed

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 33

(Aside) An Alternative SW Approach:
Paravirtualization

•
Don't try to create a duplicate of hardware; create something useful and similar

–
Define result of problem sensitive instructions as “undefined”

–
Introduce new architectural features that improve virtual machine performance

•
New instructions: idle-with-timeout instruction (rather than idle loop)

•
Slightly higher level of abstraction for hardware device interfaces than hw provides

•
Because it's not a duplicate, some modification of the guest OS may be required

•
While you're at it, address some performance issues that trouble even virtualizable architectures

–
Example: Both the VMM and the guest OS are managing paging

•
Duplication of effort

•
Guest OS doesn't actually know what the state of memory is

•
Resolving a fault requires composing the guest OS and VMM page tables

–
Solution: remove paging from guest OS

•
Qualitatively, paravirtualization is to virtual machines what hints are to caches

–
We change the problem definition slightly, and end up with much higher performance implementations

04/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 34

OS/Architecture Summary

• Some architectural features are required to run an OS in a
reasonable way and user processes at full machine speed
– (At least) two modes of operation (privileged, user)

– Privileged instructions

– Memory protection

– Interrupts / exceptions / timers

• We'll be seeing more of virtual machines for the foreseeable
future
– Their efficiency, and in fact the ability to create them at all, is strongly

affected by the architecture

– Architectural features are evolving explicitly to provide better support
for them

	CSE 451: Operating Systems Spring 2006 Module 2 Architectural Support for Operating Systems
	Slide 2
	Even coarse architectural trends impact tremendously the design of systems
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Lower-level architecture affects the OS even more dramatically
	Architectural features affecting OS’s
	Protected instructions
	OS protection
	Crossing protection boundaries
	A kernel crossing illustrated
	System call issues
	Slide 17
	Memory protection
	I/O control
	Timers
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

