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Outline

• Part 1:  Basics of Architecture / OS Interaction
– Largely a review of CSE 378 material

• Part 2: The Hardware Architecture and Virtual 
Machines

– Note: We'll need the basics of the Part 1 basics to 
understand Part 2...
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• Processing power
– doubling every 18 months

– 60% improvement each year

– factor of 100 every decade

– 1980:  1 MHz Apple II+ == $2,000 ($5200)
• 1980 also 1 MIPS VAX-11/780 == $120,000 ($312K)

– 2011:  3.0GHz Quad Core == $530

Even coarse architectural trends
impact tremendously the design of systems
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Power Consumption

http://www.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf
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Primary Memory / Disk Capacity
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Primary Memory Bandwidth
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Relative Speeds

http://www.cs.cmu.edu/~amarp/cpu-io-gap.png
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Storage Latency:  
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A Current Trend: Solid State Disks

http://www.embeddedstar.com/articles/2005/2/article20050207-4.html
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Lower-level architecture affects the OS 
dramatically

• Operating system functionality is dictated, at least in part, 
by the underlying hardware architecture
– includes instruction set  (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

• Architectural support can vastly simplify (or complicate!) 
OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked support for 

virtual memory, in part because at that time PCs lacked necessary 
hardware support
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Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation

– synchronization instructions (e.g., atomic test-and-set)

– memory protection

– I/O control operations

– interrupts and exceptions

– protected modes of execution (kernel vs. user)

– protected instructions

– system calls (and software interrupts)

• [2006] virtualization architectures
– Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-architecture-usage.htm

– AMD: http://sites.amd.com/us/business/it-solutions/usage-models/virtualization/Pages/amd-v.aspx
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Protected instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)

• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.

• why?

– manipulate special ‘mode bits’
• interrupt priority level

• why?

– halt instruction
• why?
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OS protection

• So how does the processor know if a protected 
instruction should be allowed?
– the architecture must support at least two modes of 

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel (privileged) mode   (OS == kernel)

• Protected instructions can only be executed in kernel 
mode
– what happens if user mode executes a protected 

instruction?
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Crossing protection boundaries

• User programs must call an OS procedure to do something privileged
– OS defines a set of system calls

– System calls act like protected procedure calls

• A syscall instruction atomically:
– Saves the current PC

– Sets the PC to a handler address

• Writing the handler address is a privileged operation

– Sets the execution mode to privileged

• With that, it's a lot like local procedure call (jal):
– Caller puts arguments in a place callee expects (registers or stack)

• One of the args is a syscall number, indicating which OS function to invoke

– Callee (OS) saves caller’s state (regs, other control info) so it can use CPU

– OS function code runs

• OS must verify caller’s arguments (e.g., pointers)

– OS returns using a special instruction (e.g., ERET – i.e., not JR)

• Atomically sets PC to return address and sets execution mode to user
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A kernel crossing illustrated

user mode

kernel mode

Firefox: syscall instruction

save app state;
verify syscall number
find read( ) handler in 
vector table

PC = saved PC;
enter user mode

trap handler

read( ) kernel routine

Set up args, including syscall number for “read”

Verify args;
Execute read()

Set up return values
Restore app state

ERET instruction

Save user PC;
PC =  trap handler address

enter kernel mode
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System call issues

• What would be wrong if syscall worked like 
subroutine call, with the caller specifying the next 
PC?

• What would happen if kernel didn’t save state?

• Why must the kernel verify arguments?

• How can you reference kernel objects as arguments 
to or results from system calls?
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Exception Handling and Protection

• All entries to the OS occur via the mechanism just shown
– Acquiring privilege mode execution and branching to the trap handler are inseparable

• Terminology:
– Interrupt:  asynchronous; caused by an external device

– Exception: synchronous; unexpected problem with instruction

– Trap: synchronous; intended transition to OS due to an instruction

• Privileged instructions and resources are the basis for most everything:
– Memory protection

– Protected I/O

– Limiting user resource consumption
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Memory protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security

– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers 
are loaded by OS before 

starting program
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I/O control

• How does the kernel start an I/O?
• special I/O instructions  (privileged operation)
• memory-mapped I/O  (privileged memory)

• How does the OS know an I/O operation has 
finished?
– Polling (sit in loop asking device if it's done)

– Interrupt (“get back to me when you're finished”)

• Interrupts are basis for asynchronous I/O
– OS starts IO operation, then goes on doing whatever
– device performs an operation asynchronously to CPU activity
– device sends an interrupt signal on bus when done
– Interrupt causes a kernel entry
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Protected CPU Use: Timers

• How can the OS prevent runaway user programs 
from hogging the CPU (infinite loops?)

– use a hardware countdown timer
• Generates an interrupt when it has counted down to 0

– before it transfers to a user process, the OS sets the 
countdown timer

• E.g., sets a number that will cause an interrupt in 10 msec.

– now either the user process invokes the OS within the next 
10 msec. or the timer goes off

• Either way, the OS has a chance to choose a different process 
to “dispatch” next
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Part 2: Architecture and Virtual Machines

• Virtual machines date back to the 1960's
– IBM has had a commercial product since then

• A virtual machine is an efficient, software produced “hardware” 
execution environment
– Efficient: virtual machine user processes run directly on the physical CPU

• Eliminates Java or other software simulators

– Hardware execution environment: any code that would run on an identically 
configured physical system will run on the virtual machine, including an OS

• Because each is like a separate hardware machine, they 
encapsulate complete namespaces for all resources
– No sharing of names ⇒ Complete isolation 

• They've undergone a huge resurgence the last decade
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Virtual Machines: The Layered View

Hardware

Virtual Machine Monitor

OS OSGuest OS's

User
processes User mode

execution

Kernel mode
execution
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Temporal Snapshots

CPU CPU

OS

The user process 
is executing in 
user mode, as 

expected

The guest OS is 
executing in user 
mode, which it 
isn't expecting

CPU

VMM

CPU

OS

The VMM is 
executing in 

privileged mode, 
which it is 
expecting
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Basic Ideas

• When any kind of exception or interrupt occurs, we'll end up in the 
VMM, rather than the guest OS
– VMM simulates state changes that would have been made by the hardware, 

then restarts VM at the guest OS handler address

• E.g., stuffs the saved PC where the architecture says it should be

• When the guest OS tries to execute a privileged instruction:
– Same thing

• What's so hard?
– Not all instructions that require VMM intervention may be privileged

• Depends on the architecture
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An Example Problem

• Suppose the ERET instruction (return to user process after handling exception) 
is not privileged

– ERET sets the PC to the saved PC, and

– Sets CPU privilege mode to user

– There doesn't seem to be a reason to prevent user processes from doing that (even if there's 
no reason for them to want to)

• The problem for VMMs:

– They have to track the virtual CPU protection level to know how to respond to a privileged 
instruction exception

• When the virtual CPU state is privileged, the VMM should execute the effect of the privileged 
instruction

• When it's user, it should execute the effect of a privileged instruction exception on the virtual 
machine

– They therefore have to know when the guest OS executes an ERET

• Whether or not virtualization is possible depends on the hardware architecture
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“Formal Requirements for Virtualizable 
Third Generation Architectures”

• Popek and Goldberg, 1974
– A local copy is available at 

http://www.cs.washington.edu/education/courses/cse451/11sp/protected/popekGoldberg.pdf

• A virtual machine is:
– Efficient: only minor slowdowns for user processes

– Isolated: the VMM controls physical resource allocation, not the 
guest OS

– A Duplicate: programs get the same results as on physical 
machines, modulo resource availability and timing issues

• Virtual machine configuration is smaller than the physical machine 
(less memory, less disk, …)

• Virtual machine may have more or fewer devices

– More disks, for example

http://www.cs.washington.edu/education/courses/cse451/11sp/protected/popekGoldberg.pdf
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When Can An Architecture Be Virtualized?

• It helps to identify three classes of instructions

– Privileged
• Cause a trap when executed in user mode

– Sensitive
• Control Sensitive

– Instruction changes machine mode (user/privileged) or control 
settings (e.g., memory mapping)

• Behavior Sensitive
– Instruction gets different results (including next PC value) depending 

on machine mode, or the real addresses of things

» S/360 Load Real Address (LRA)  instruction

– Innocuous
– Everything else
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Formal Results

• THEOREM 1. For any conventional third generation computer, a 
virtual machine monitor may be constructed if the set of sensitive 
instructions for that computer is a subset of the set of privileged 
instructions.

• (Theorem 2: If you can virtualize, you can recursively virtualize.)
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x86 Architecture

• Doesn't meet the Popek & Goldberg virtualization criteria

• There are many reasons, but most of them stem from behavior 
sensitive instructions that don't fault in user mode

– These are “safe” operations, when not implementing virtual machines, and so 
not privileged

– E.g., reading control values (like page table pointers) is not a privileged 
operation

• The physical page table pointer registers must be set to what the 
VMM wants, not what the guest OS expects

– If the guest OS reads them, there's no chance for the VMM to fix up the results 
of the read, and the guest OS gets confused

• So, how is the x86 being virtualized?
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Virtualizing the x86: Software Approach

• Basic idea (as always):
– Execute innocuous instructions natively

– Trap on sensitive instructions and simulate their effect

• How do we find the sensitive instructions?
– Once the instructions are running natively, there's no trap when needed

– Could simulate all instructions, but...

• That isn't really a virtual machine, in the sense we mean here, because it's too slow

• Approach: find them statically, not dynamically
– “Read the source,” not the stream of executing instructions

– When you find a sensitive instruction...

• What do we need to do here?

– Remember, I want the innocuous instructions to execute natively, and the sensitive ones 
are hiding in their midst
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Binary Rewriting

• The VMM will have control whenever a code page is being loaded
– Loading code involves setting page table permissions

– That involves a privileged instruction

• When the page is loaded
– Scan the instructions it contains, looking for the sensitive instructions

– Replace them with something that will cause a fault

– Remember the instruction that used to be there

– Now allow native execution of the code page

• This is the original approach used to grapple with the x86 by the 
VMMs you've heard of (e.g., VMWare), and is still in use
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Virtualizing x86: The Hardware Approach

• Both Intel and AMD have developed virtualization extensions to 
the architecture (starting ~2006)
– Intel: VT-x

– AMD: AMD-V

• To get correctness, they introduce new machine modes and 
duplicate the problematic state
– New modes: VMX root (actual root) and VMX non-root (you think you're root, but 

you're not)

– One sees the actual control information;  the other sees a decoy copy, whose 
contents are controlled by the VMM

• Turns a behavior sensitive instruction into an innocuous one

– Additionally, many previously non-faulting instructions cause a fault when in VMS 
non-root mode

• The extensions also provide some efficiency improvements
– E.g., they know that guest OS and VMM page tables need to be composed
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(Aside) An Alternative SW Approach: 
Paravirtualization

•
Don't try to create a duplicate of hardware;  create something useful and similar

–
Define result of problem sensitive instructions as “undefined”

–
Introduce new architectural features that improve virtual machine performance

•
New instructions:   idle-with-timeout instruction (rather than idle loop)

•
Slightly higher level of abstraction for hardware device interfaces than hw provides

•
Because it's not a duplicate, some modification of the guest OS may be required

•
While you're at it, address some performance issues that trouble even virtualizable architectures

–
Example: Both the VMM and the guest OS are managing paging

•
Duplication of effort

•
Guest OS doesn't actually know what the state of memory is

•
Resolving a fault requires composing the guest OS and VMM page tables

–
Solution: remove paging from guest OS

•
Qualitatively, paravirtualization is to virtual machines what hints are to caches

–
We change the problem definition slightly, and end up with much higher performance implementations
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OS/Architecture Summary

• Some architectural features are required to run an OS in a 
reasonable way and user processes at full machine speed
– (At least) two modes of operation (privileged, user)

– Privileged instructions

– Memory protection

– Interrupts / exceptions / timers

• We'll  be seeing more of virtual machines for the foreseeable 
future
– Their efficiency, and in fact the ability to create them at all, is strongly 

affected by the architecture

– Architectural features are evolving explicitly to provide better support 
for them
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